login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287893
a(n) = floor(n*(n+2)/9).
1
0, 0, 0, 1, 2, 3, 5, 7, 8, 11, 13, 15, 18, 21, 24, 28, 32, 35, 40, 44, 48, 53, 58, 63, 69, 75, 80, 87, 93, 99, 106, 113, 120, 128, 136, 143, 152, 160, 168, 177, 186, 195, 205, 215, 224, 235, 245, 255, 266, 277, 288, 300, 312, 323, 336, 348, 360, 373, 386
OFFSET
0,5
FORMULA
a(n) = (A005563(n) - A005563(n) mod 9)/9. Note that A005563(n) mod 9 has period 9: repeat [0, 3, 8, 6, 6, 8, 3, 0, 8].
Interleave A240438(n+1), A262523(n), A005563(n).
From Colin Barker, Jun 02 2017: (Start)
G.f.: x^3*(1 + x^3 - x^5 + 2*x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)*(1 + x^3 + x^6)).
a(n) = 2*a(n-1) - a(n-2) + a(n-9) - 2*a(n-10) + a(n-11) for n>10.
(End)
a(n) = floor(n*(n+2)/9). - Alois P. Heinz, Jun 02 2017
EXAMPLE
a(3) = (15-6)/9 = 1.
MATHEMATICA
Table[Floor[(n(n+2))/9], {n, 0, 60}] (* or *) LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {0, 0, 0, 1, 2, 3, 5, 7, 8, 11, 13}, 60] (* Harvey P. Dale, Jan 09 2023 *)
PROG
(PARI) concat(vector(3), Vec(x^3*(1 + x^3 - x^5 + 2*x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)*(1 + x^3 + x^6)) + O(x^100))) \\ Colin Barker, Jun 02 2017
(PARI) a(n)=n*(n+2)\9 \\ Charles R Greathouse IV, Jun 06 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 02 2017
EXTENSIONS
Definition simplified by Alois P. Heinz, Jun 02 2017
STATUS
approved