Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jan 09 2023 18:28:44
%S 0,0,0,1,2,3,5,7,8,11,13,15,18,21,24,28,32,35,40,44,48,53,58,63,69,75,
%T 80,87,93,99,106,113,120,128,136,143,152,160,168,177,186,195,205,215,
%U 224,235,245,255,266,277,288,300,312,323,336,348,360,373,386
%N a(n) = floor(n*(n+2)/9).
%H Colin Barker, <a href="/A287893/b287893.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,0,0,0,1,-2,1).
%F a(n) = (A005563(n) - A005563(n) mod 9)/9. Note that A005563(n) mod 9 has period 9: repeat [0, 3, 8, 6, 6, 8, 3, 0, 8].
%F Interleave A240438(n+1), A262523(n), A005563(n).
%F From _Colin Barker_, Jun 02 2017: (Start)
%F G.f.: x^3*(1 + x^3 - x^5 + 2*x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)*(1 + x^3 + x^6)).
%F a(n) = 2*a(n-1) - a(n-2) + a(n-9) - 2*a(n-10) + a(n-11) for n>10.
%F (End)
%F a(n) = floor(n*(n+2)/9). - _Alois P. Heinz_, Jun 02 2017
%e a(3) = (15-6)/9 = 1.
%t Table[Floor[(n(n+2))/9],{n,0,60}] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,1,-2,1},{0,0,0,1,2,3,5,7,8,11,13},60] (* _Harvey P. Dale_, Jan 09 2023 *)
%o (PARI) concat(vector(3), Vec(x^3*(1 + x^3 - x^5 + 2*x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)*(1 + x^3 + x^6)) + O(x^100))) \\ _Colin Barker_, Jun 02 2017
%o (PARI) a(n)=n*(n+2)\9 \\ _Charles R Greathouse IV_, Jun 06 2017
%Y Cf. A005563, A240438, A262523, A262397, A262997.
%K nonn,easy
%O 0,5
%A _Paul Curtz_, Jun 02 2017
%E Definition simplified by _Alois P. Heinz_, Jun 02 2017