|
|
A287892
|
|
Number of unrooted unlabeled 4-cactus graphs on 3n+1 nodes.
|
|
5
|
|
|
1, 1, 1, 3, 7, 25, 88, 366, 1583, 7336, 34982, 172384, 867638, 4452029, 23194392, 122462546, 653957197, 3527218134, 19192275883, 105248481503, 581223149532, 3230039198628, 18053111982952, 101426901301489, 572554846192811, 3246191706162233, 18478844801342495
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
G.f.: g(x) + x*(2*g(x^4) + 3*g(x^2)^2 - 2*g(x)^2*g(x^2) - 3*g(x)^4)/8 where g(x) is the g.f. of A287891.
|
|
PROG
|
(PARI) \\ Here G(n) is A287891 as vector.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
G(n)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec(g*(g^2 + subst(g, x, x^2))/2))); concat([1], v)}
seq(n)={my(p=Ser(G(n))); my(g(d)=subst(p, x, x^d)); Vec(g(1) + x*(2*g(4) + 3*g(2)^2 - 2*g(1)^2*g(2) - 3*g(1)^4)/8)} \\ Andrew Howroyd, Feb 18 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
a(0) changed and terms a(12) and beyond from Andrew Howroyd, Feb 18 2020
|
|
STATUS
|
approved
|
|
|
|