login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287892
Number of unrooted unlabeled 4-cactus graphs on 3n+1 nodes.
5
1, 1, 1, 3, 7, 25, 88, 366, 1583, 7336, 34982, 172384, 867638, 4452029, 23194392, 122462546, 653957197, 3527218134, 19192275883, 105248481503, 581223149532, 3230039198628, 18053111982952, 101426901301489, 572554846192811, 3246191706162233, 18478844801342495
OFFSET
0,4
LINKS
Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.
FORMULA
G.f.: g(x) + x*(2*g(x^4) + 3*g(x^2)^2 - 2*g(x)^2*g(x^2) - 3*g(x)^4)/8 where g(x) is the g.f. of A287891.
PROG
(PARI) \\ Here G(n) is A287891 as vector.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
G(n)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec(g*(g^2 + subst(g, x, x^2))/2))); concat([1], v)}
seq(n)={my(p=Ser(G(n))); my(g(d)=subst(p, x, x^d)); Vec(g(1) + x*(2*g(4) + 3*g(2)^2 - 2*g(1)^2*g(2) - 3*g(1)^4)/8)} \\ Andrew Howroyd, Feb 18 2020
CROSSREFS
Column k=4 of A332649.
Sequence in context: A148738 A148739 A129084 * A343278 A002870 A096579
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 21 2017
EXTENSIONS
a(0) changed and terms a(12) and beyond from Andrew Howroyd, Feb 18 2020
STATUS
approved