login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287892 Number of unrooted unlabeled 4-cactus graphs on 3n+1 nodes. 5
1, 1, 1, 3, 7, 25, 88, 366, 1583, 7336, 34982, 172384, 867638, 4452029, 23194392, 122462546, 653957197, 3527218134, 19192275883, 105248481503, 581223149532, 3230039198628, 18053111982952, 101426901301489, 572554846192811, 3246191706162233, 18478844801342495 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.
FORMULA
G.f.: g(x) + x*(2*g(x^4) + 3*g(x^2)^2 - 2*g(x)^2*g(x^2) - 3*g(x)^4)/8 where g(x) is the g.f. of A287891.
PROG
(PARI) \\ Here G(n) is A287891 as vector.
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
G(n)={my(v=[]); for(n=1, n, my(g=1+x*Ser(v)); v=EulerT(Vec(g*(g^2 + subst(g, x, x^2))/2))); concat([1], v)}
seq(n)={my(p=Ser(G(n))); my(g(d)=subst(p, x, x^d)); Vec(g(1) + x*(2*g(4) + 3*g(2)^2 - 2*g(1)^2*g(2) - 3*g(1)^4)/8)} \\ Andrew Howroyd, Feb 18 2020
CROSSREFS
Column k=4 of A332649.
Sequence in context: A148738 A148739 A129084 * A343278 A002870 A096579
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 21 2017
EXTENSIONS
a(0) changed and terms a(12) and beyond from Andrew Howroyd, Feb 18 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 21:48 EDT 2024. Contains 375759 sequences. (Running on oeis4.)