login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129084
a(n) = numerator of b(n): b(n) = the minimum possible value for a continued fraction whose terms are a permutation of the terms of the simple continued fraction for H(n) = sum{k=1 to n} 1/k, the n-th harmonic number.
4
1, 3, 7, 25, 88, 49, 219, 416, 4896, 4523, 68559, 40460, 613441, 791549, 487091, 1123701, 16678867, 4363873, 121113412, 24252821, 5893113, 7436454, 217867766, 306700798, 14495108003, 11420114688, 78503059517, 93975842393
OFFSET
1,2
LINKS
EXAMPLE
The continued fraction for H(5) = 137/60 is [2;3,1,1,8]. The minimum value a continued fraction can have with these same terms in some order is [1;8,1,3,2] = 88/79.
MAPLE
with(numtheory):
H:= proc(n) option remember; `if`(n=1, 1, H(n-1)+1/n) end:
r:= proc(l) local j;
infinity; for j from nops(l) to 1 by -1 do l[j]+1/% od
end:
hs:= proc(l) local ll, h, s, m; ll:= []; h:= nops(l); s:= 1; m:= s; while s<=h do ll:= [ll[], l[m]]; if m=h then h:= h-1; m:= s else s:= s+1; m:= h fi od; ll end:
a:= n-> numer(r(hs(sort(cfrac(H(n), 'quotients'))))):
seq(a(n), n=1..40); # Alois P. Heinz, Aug 04 2009
MATHEMATICA
r[l_] := Module[{lj, j}, For[lj = Infinity; j = Length[l], j >= 1, j--, lj = l[[j]] + 1/lj]; lj];
hs[l_] := Module[{ll, h, s, m}, ll = {}; h = Length[l]; s = 1; m = s; While[s <= h, ll = Append[ll, l[[m]]]; If[m == h, h--; m = s, s++; m = h ]]; ll];
a[n_] := Numerator[ r[ hs[ Sort[ ContinuedFraction[ HarmonicNumber[n]]]]]];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 20 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Mar 28 2007
EXTENSIONS
More terms from Diana L. Mecum, Jun 16 2007
Extended beyond a(12) Alois P. Heinz, Aug 04 2009
STATUS
approved