login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129082
a(n) = numerator of b(n): b(n) = the maximum possible value for a continued fraction whose terms are a permutation of the terms of the simple continued fraction for H(n) = sum{k=1 to n} 1/k, the n-th harmonic number.
4
1, 3, 11, 25, 123, 53, 275, 581, 5898, 6337, 81839, 52193, 794409, 929481, 611743, 1609819, 24076913, 6686545, 176364550, 32690593, 9049485, 10684919, 281305624, 439838742, 20192641459, 17176118816, 107883019372, 142161870055, 2874353551691, 3214687921599
OFFSET
1,2
LINKS
EXAMPLE
The continued fraction for H(5) = 137/60 is [2;3,1,1,8]. The maximum value a continued fraction can have with these same terms in some order is [8;1,3,1,2] = 123/14.
MAPLE
H := proc(n) add(1/k, k=1..n) ; end: Ltoc := proc(L) numtheory[nthconver](L, nops(L)-1) ; end: r := proc(n) option remember ; local m, rL, rp, L ; if n = 1 then 1; else rL := numtheory[cfrac](H(n), 'quotients') ; rp := combinat[permute](rL) ; m := Ltoc(rL) ; for L in rp do m := max(m, Ltoc(L)) ; od: m ; fi; end: A129082 := proc(n) numer(r(n)) ; end: for n from 1 do printf("%d, \n", A129082(n)) ; od: # R. J. Mathar, Jul 30 2009
# second Maple program:
with(numtheory):
H:= proc(n) option remember; `if`(n=1, 1, H(n-1)+1/n) end:
r:= proc(l) local j;
infinity; for j from nops(l) to 1 by -1 do l[j]+1/% od
end:
sh:= proc(l) local ll, h, s, m; ll:= []; h:= nops(l); s:= 1; m:= h; while s<=h do ll:= [ll[], l[m]]; if m=h then h:= h-1; m:= s else s:= s+1; m:= h fi od; ll end:
a:= n-> numer(r(sh(sort(cfrac(H(n), 'quotients'))))):
seq(a(n), n=1..40); # Alois P. Heinz, Aug 04 2009
MATHEMATICA
r[l_] := Module[{lj, j}, For[lj = Infinity; j = Length[l], j >= 1, j--, lj = l[[j]] + 1/lj]; lj];
sh[l_] := Module[{ll, h, s, m}, ll = {}; h = Length[l]; s = 1; m = h; While[s <= h, ll = Append[ll, l[[m]]]; If[m == h, h--; m = s, s++; m = h ]]; ll];
a[n_] := Numerator[ r[ sh[ Sort[ ContinuedFraction[ HarmonicNumber[n]]]]]];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 20 2017, after Alois P. Heinz *)
PROG
(Magma) Q:=Rationals(); [ Numerator(Max([ r: r in R ])) where R:=[ c[1, 1]/c[2, 1]: c in C ] where C:=[ Convergents(s): s in S ] where S:=Seqset([ [m(p[i]):i in [1..#x] ]: p in P ]) where m:=map< x->y | [<x[i], y[i]>:i in [1..#x] ] > where P:=Permutations(Seqset(x)) where x:=[1..#y]: y in [ ContinuedFraction(h): h in [ &+[ 1/k: k in [1..n] ]: n in [1..8] ] ] ]; // Klaus Brockhaus, Jul 31 2009
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Leroy Quet, Mar 28 2007
EXTENSIONS
6 more terms from R. J. Mathar, Jul 30 2009
Extended beyond a(12) Alois P. Heinz, Aug 04 2009
STATUS
approved