Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 21 2017 04:13:16
%S 1,3,7,25,88,49,219,416,4896,4523,68559,40460,613441,791549,487091,
%T 1123701,16678867,4363873,121113412,24252821,5893113,7436454,
%U 217867766,306700798,14495108003,11420114688,78503059517,93975842393
%N a(n) = numerator of b(n): b(n) = the minimum possible value for a continued fraction whose terms are a permutation of the terms of the simple continued fraction for H(n) = sum{k=1 to n} 1/k, the n-th harmonic number.
%H Alois P. Heinz, <a href="/A129084/b129084.txt">Table of n, a(n) for n = 1..750</a>
%e The continued fraction for H(5) = 137/60 is [2;3,1,1,8]. The minimum value a continued fraction can have with these same terms in some order is [1;8,1,3,2] = 88/79.
%p with(numtheory):
%p H:= proc(n) option remember; `if`(n=1, 1, H(n-1)+1/n) end:
%p r:= proc(l) local j;
%p infinity; for j from nops(l) to 1 by -1 do l[j]+1/% od
%p end:
%p hs:= proc(l) local ll, h, s, m; ll:= []; h:= nops(l); s:= 1; m:= s; while s<=h do ll:= [ll[],l[m]]; if m=h then h:= h-1; m:= s else s:= s+1; m:= h fi od; ll end:
%p a:= n-> numer(r(hs(sort(cfrac(H(n), 'quotients'))))):
%p seq(a(n), n=1..40); # _Alois P. Heinz_, Aug 04 2009
%t r[l_] := Module[{lj, j}, For[lj = Infinity; j = Length[l], j >= 1, j--, lj = l[[j]] + 1/lj]; lj];
%t hs[l_] := Module[{ll, h, s, m}, ll = {}; h = Length[l]; s = 1; m = s; While[s <= h, ll = Append[ll, l[[m]]]; If[m == h, h--; m = s, s++; m = h ]]; ll];
%t a[n_] := Numerator[ r[ hs[ Sort[ ContinuedFraction[ HarmonicNumber[n]]]]]];
%t Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Mar 20 2017, after _Alois P. Heinz_ *)
%Y Cf. A129082, A129083, A129085.
%K frac,nonn
%O 1,2
%A _Leroy Quet_, Mar 28 2007
%E More terms from _Diana L. Mecum_, Jun 16 2007
%E Extended beyond a(12) _Alois P. Heinz_, Aug 04 2009