login
A287835
Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 4.
0
1, 11, 107, 1043, 10169, 99149, 966719, 9425675, 91901945, 896059709, 8736735695, 85184670011, 830565128489, 8098152315149, 78958372642847, 769857662314475, 7506244118089817, 73187166301583837, 713587411625345903, 6957599532298617755, 67837787583138657929
OFFSET
0,2
FORMULA
For n>3, a(n) = 10*a(n-1) - a(n-2) - 14*a(n-3), a(0)=1, a(1)=11, a(2)=107, a(3)=1043.
G.f.: (1 + x - 2 x^2 - 2 x^3)/(1 - 10 x + x^2 + 14 x^3).
MATHEMATICA
LinearRecurrence[{10, -1, -14}, {1, 11, 107, 1043}, 20]
PROG
(Python)
def a(n):
.if n in [0, 1, 2, 3]:
..return [1, 11, 107, 1043][n]
.return 10*a(n-1) - a(n-2) - 14*a(n-3)
KEYWORD
nonn,easy
AUTHOR
David Nacin, Jun 07 2017
STATUS
approved