login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287835
Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 4.
0
1, 11, 107, 1043, 10169, 99149, 966719, 9425675, 91901945, 896059709, 8736735695, 85184670011, 830565128489, 8098152315149, 78958372642847, 769857662314475, 7506244118089817, 73187166301583837, 713587411625345903, 6957599532298617755, 67837787583138657929
OFFSET
0,2
FORMULA
For n>3, a(n) = 10*a(n-1) - a(n-2) - 14*a(n-3), a(0)=1, a(1)=11, a(2)=107, a(3)=1043.
G.f.: (1 + x - 2 x^2 - 2 x^3)/(1 - 10 x + x^2 + 14 x^3).
MATHEMATICA
LinearRecurrence[{10, -1, -14}, {1, 11, 107, 1043}, 20]
PROG
(Python)
def a(n):
.if n in [0, 1, 2, 3]:
..return [1, 11, 107, 1043][n]
.return 10*a(n-1) - a(n-2) - 14*a(n-3)
KEYWORD
nonn,easy
AUTHOR
David Nacin, Jun 07 2017
STATUS
approved