login
A163413
a(n) = 14*a(n-1) - 47*a(n-2) for n > 1; a(0) = 1, a(1) = 11.
3
1, 11, 107, 981, 8705, 75763, 651547, 5560797, 47228449, 399840827, 3378034475, 28499963781, 240231872609, 2023747918819, 17041572850843, 143465867727309, 1207568224192705, 10163059355514347, 85527124440143723
OFFSET
0,2
COMMENTS
Binomial transform of A163412. Inverse binomial transform of A163414.
FORMULA
a(n) = ((1+2*sqrt(2))*(7+sqrt(2))^n + (1-2*sqrt(2))*(7-sqrt(2))^n)/2.
G.f.: (1-3*x)/(1-14*x+47*x^2).
E.g.f.: exp(7*x)*( cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Dec 21 2016
MATHEMATICA
LinearRecurrence[{14, -47}, {1, 11}, 50] (* G. C. Greubel, Dec 21 2016 *)
PROG
(Magma) [ n le 2 select 10*n-9 else 14*Self(n-1)-47*Self(n-2): n in [1..19] ];
(PARI) Vec((1-3*x)/(1-14*x+47*x^2) + O(x^50)) \\ G. C. Greubel, Dec 21 2016
CROSSREFS
Sequence in context: A058715 A140617 A224717 * A287835 A001721 A193308
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jul 27 2009
STATUS
approved