login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287063
Number of dominating sets in the n-crown graph (for n > 1).
2
3, 9, 39, 183, 833, 3629, 15291, 63051, 256605, 1036401, 4167815, 16720031, 66986169, 268173525, 1073185011, 4293787923, 17177379125, 68714234201, 274866897279, 1099488559527, 4397998277073, 17592085381629, 70368534463019, 281474540503643, 1125899000873613
OFFSET
1,1
COMMENTS
The 1-crown graph is the 2-empty graph bar K_2 which has a single dominating set and so differs from a(1) = 3. - Eric W. Weisstein, Sep 04 2021
LINKS
Eric Weisstein's World of Mathematics, Crown Graph
Eric Weisstein's World of Mathematics, Dominating Set
FORMULA
a(n) = 4^n - 2^n*(n + 2) + n^2 + n + 3.
From Colin Barker, May 19 2017: (Start)
G.f.: x*(3 - 24*x + 81*x^2 - 126*x^3 + 92*x^4 - 32*x^5) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x)).
a(n) = 11*a(n-1) - 47*a(n-2) + 101*a(n-3) - 116*a(n-4) + 68*a(n-5) - 16*a(n-6) for n>6.
(End)
MATHEMATICA
Table[4^n - 2^n (n + 2) + n^2 + n + 3, {n, 25}]
LinearRecurrence[{11, -47, 101, -116, 68, -16}, {3, 9, 39, 183, 833, 3629}, 25]
PROG
(PARI) Vec( x*(3 - 24*x + 81*x^2 - 126*x^3 + 92*x^4 - 32*x^5) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, May 19 2017
CROSSREFS
Sequence in context: A121101 A280066 A360876 * A080635 A278749 A208816
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, May 19 2017
STATUS
approved