login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278749
E.g.f. C(x) + S(x), such that C(x)^2 - S(x)^2 = 1, 3*C(x)^2 - 2*D(x)^3 = 1, and D(x) = 1 + Integral S(x)*C(x) dx.
4
1, 1, 1, 3, 9, 39, 189, 1137, 7521, 58221, 487521, 4615623, 46747449, 523484019, 6218441469, 80413567317, 1095843999681, 16072230046041, 247107215918241, 4053246141598443, 69395454770712489, 1258826280827924799, 23749475226740969949, 472083799922946212697, 9730211267060692468641, 210327336751547848824261, 4701988645468367963255361, 109812853605044722106919663
OFFSET
0,4
LINKS
FORMULA
E.g.f. A(x) = C(x) + S(x), where S(x), C(x), and D(x) satisfy:
(1) A(x) = exp( Integral D(x)^2 dx ),
(2) A(x) = 1 + Integral A(x)*D(x)^2 dx,
(3) S(x) = Integral C(x)*D(x)^2 dx,
(4) C(x) = 1 + Integral S(x)*D(x)^2 dx,
(5) D(x) = 1 + Integral S(x)*C(x) dx,
(6) C(x)^2 - S(x)^2 = 1,
(7) 3*C(x)^2 - 2*D(x)^3 = 1,
(8) 2*D(x)^3 - 3*S(x)^2 = 2.
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 39*x^5/5! + 189*x^6/6! + 1137*x^7/7! + 7521*x^8/8! + 58221*x^9/9! + 487521*x^10/10! + 4615623*x^11/11! + 46747449*x^12/12! +...
such that A(x) = C(x) + S(x) where
S(x) = x + 3*x^3/3! + 39*x^5/5! + 1137*x^7/7! + 58221*x^9/9! + 4615623*x^11/11! + 523484019*x^13/13! + 80413567317*x^15/15! + 16072230046041*x^17/17! + 4053246141598443*x^19/19! +...
C(x) = 1 + x^2/2! + 9*x^4/4! + 189*x^6/6! + 7521*x^8/8! + 487521*x^10/10! + 46747449*x^12/12! + 6218441469*x^14/14! + 1095843999681*x^16/16! + 247107215918241*x^18/18! +...
Related expansions
C(x)^2 = 1 + 2*x^2/2! + 24*x^4/4! + 648*x^6/6! + 31296*x^8/8! + 2366352*x^10/10! + 257865984*x^12/12! + 38266414848*x^14/14! + 7419295374336*x^16/16! + 1820980419409152*x^18/18! +...
D(x) = 1 + x^2/2! + 6*x^4/4! + 114*x^6/6! + 4224*x^8/8! + 258696*x^10/10! + 23685696*x^12/12! + 3030422544*x^14/14! + 516368179584*x^16/16! + 113039478326016*x^18/18! +...
D(x)^2 = 1 + 2*x^2/2! + 18*x^4/4! + 408*x^6/6! + 17352*x^8/8! + 1184832*x^10/10! + 118618128*x^12/12! + 16371203328*x^14/14! + 2979295540992*x^16/16! + 691248148134912*x^18/18! +...
D(x)^3 = 1 + 3*x^2/2! + 36*x^4/4! + 972*x^6/6! + 46944*x^8/8! + 3549528*x^10/10! + 386798976*x^12/12! + 57399622272*x^14/14! + 11128943061504*x^16/16! + 2731470629113728*x^18/18! +...
satisfy
C(x)^2 - S(x)^2 = 1,
3*C(x)^2 - 2*D(x)^3 = 1.
Logarithm of the e.g.f. begins:
log(A(x)) = x + 2*x^3/3! + 18*x^5/5! + 408*x^7/7! + 17352*x^9/9! + 1184832*x^11/11! + 118618128*x^13/13! + 16371203328*x^15/15! +...
which equals Integral D(x)^2 dx.
PROG
(PARI) {a(n) = my(S=x, C=1, D=1); for(i=1, n, S = intformal(C*(D^2 +O(x^(n+1)))); C = 1 + intformal(S*(D^2 +O(x^(n+1)))); D = 1 + intformal(S*C); ); n!*polcoeff(C+S, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A278750 (S(x)), A278751 (C(x)), A278752 (D(x)).
Sequence in context: A360876 A287063 A080635 * A208816 A130905 A030799
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2016
STATUS
approved