login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208816
G.f.: Sum_{n>=0} Product_{k=1..n} ((1+2*x)^k - 1)/((1+2*x)^k + 1).
1
1, 1, 1, 3, 9, 39, 193, 1135, 7585, 57055, 476161, 4366399, 43627393, 471693439, 5486186497, 68296367871, 906012795393, 12758750871039, 190081374027777, 2986828127798271, 49367131036252161, 856162355062638591, 15545263081776742401, 294905583408022810623
OFFSET
0,4
LINKS
FORMULA
a(n) ~ c * 8^n * n^(n+1) / (exp(n) * Pi^(2*n)), where c = 16*sqrt(2) / (Pi^2 * exp(Pi^2/8)) = 0.6676454503392449294235... . - Vaclav Kotesovec, Nov 06 2014, updated Aug 22 2017
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 9*x^4 + 39*x^5 + 193*x^6 + 1135*x^7 + ...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, prod(k=1, m, ((1+2*x)^k - 1)/((1+2*x)^k + 1 +x*O(x^n)))), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A287063 A080635 A278749 * A130905 A030799 A273396
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 01 2012
STATUS
approved