login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n>=0} Product_{k=1..n} ((1+2*x)^k - 1)/((1+2*x)^k + 1).
1

%I #17 Mar 18 2024 04:45:51

%S 1,1,1,3,9,39,193,1135,7585,57055,476161,4366399,43627393,471693439,

%T 5486186497,68296367871,906012795393,12758750871039,190081374027777,

%U 2986828127798271,49367131036252161,856162355062638591,15545263081776742401,294905583408022810623

%N G.f.: Sum_{n>=0} Product_{k=1..n} ((1+2*x)^k - 1)/((1+2*x)^k + 1).

%H Vaclav Kotesovec, <a href="/A208816/b208816.txt">Table of n, a(n) for n = 0..340</a>

%F a(n) ~ c * 8^n * n^(n+1) / (exp(n) * Pi^(2*n)), where c = 16*sqrt(2) / (Pi^2 * exp(Pi^2/8)) = 0.6676454503392449294235... . - _Vaclav Kotesovec_, Nov 06 2014, updated Aug 22 2017

%e G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 9*x^4 + 39*x^5 + 193*x^6 + 1135*x^7 + ...

%o (PARI) {a(n)=polcoeff(sum(m=0, n, prod(k=1, m, ((1+2*x)^k - 1)/((1+2*x)^k + 1 +x*O(x^n)))), n)}

%o for(n=0,30,print1(a(n),", "))

%K nonn

%O 0,4

%A _Paul D. Hanna_, Mar 01 2012