Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 04 2021 20:08:27
%S 3,9,39,183,833,3629,15291,63051,256605,1036401,4167815,16720031,
%T 66986169,268173525,1073185011,4293787923,17177379125,68714234201,
%U 274866897279,1099488559527,4397998277073,17592085381629,70368534463019,281474540503643,1125899000873613
%N Number of dominating sets in the n-crown graph (for n > 1).
%C The 1-crown graph is the 2-empty graph bar K_2 which has a single dominating set and so differs from a(1) = 3. - _Eric W. Weisstein_, Sep 04 2021
%H Colin Barker, <a href="/A287063/b287063.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Crown Graph.html">Crown Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (11,-47,101,-116,68,-16).
%F a(n) = 4^n - 2^n*(n + 2) + n^2 + n + 3.
%F From _Colin Barker_, May 19 2017: (Start)
%F G.f.: x*(3 - 24*x + 81*x^2 - 126*x^3 + 92*x^4 - 32*x^5) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x)).
%F a(n) = 11*a(n-1) - 47*a(n-2) + 101*a(n-3) - 116*a(n-4) + 68*a(n-5) - 16*a(n-6) for n>6.
%F (End)
%t Table[4^n - 2^n (n + 2) + n^2 + n + 3, {n, 25}]
%t LinearRecurrence[{11, -47, 101, -116, 68, -16}, {3, 9, 39, 183, 833, 3629}, 25]
%o (PARI) Vec( x*(3 - 24*x + 81*x^2 - 126*x^3 + 92*x^4 - 32*x^5) / ((1 - x)^3*(1 - 2*x)^2*(1 - 4*x)) + O(x^30)) \\ _Colin Barker_, May 19 2017
%K nonn,easy
%O 1,1
%A _Eric W. Weisstein_, May 19 2017