|
|
A121101
|
|
Catapolyoctagons (see Cyvin et al. for precise definition).
|
|
2
|
|
|
1, 1, 3, 9, 39, 169, 819, 3969, 19719, 97969, 489219, 2442969, 12211719, 61042969, 305199219, 1525917969, 7629511719, 38147167969, 190735449219, 953675292969, 4768374511719, 23841862792969, 119209304199219, 596046472167969, 2980232312011719, 14901161315917969, 74505806335449219
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
The sequence (a(n): n >= 1) counts the isomers of unbranched alpha-4-catapoly-q-qons with alpha = 0 and q = 8. It appears in Table 21 (p. 12) in Brunvoll et al. (1997).
An unbranched alpha-4-catapoly-q-gon consists of alpha tetragons and n - alpha q-gons (where q > 4). Thus, n is the total number of polygons in the unbranched catacondensed polygonal system. Since we have alpha = 0 and q = 8 for this sequence, n counts the octagons.
The formula for a(n) below follows from the "master formula" I_{ra} in Exhibit 4 (p. 13) in Brunvoll et al. (1997) with alpha = 0 and q = 8 provided that a binomial coefficient of the form binomial(k, s) with s < 0 is set to zero.
Amazingly, the empirical g.f. of Colin Barker below is correct and follows easily from the formula for a(n) given below (with a(1) = 1).
(End)
|
|
REFERENCES
|
S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134(1) (1997), 55-70; see Table I (p. 58).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*(10*x^4 - 21*x^3 + 3*x^2 + 5*x - 1) / ((x - 1)*(5*x - 1)*(5*x^2 - 1)). - Colin Barker, Aug 29 2013
a(r) = (1/4) * (1 + 5^(r-2) + 2 * (2-(-1)^r) * 5^(floor(r/2) - 1)) for r >= 2. - Petros Hadjicostas, Jul 24 2019
|
|
MATHEMATICA
|
Join[{1}, Table[(1/4) (1 + 5^(r - 2) + 2 (2 - (-1)^r) 5^(Floor[r/2] - 1)), {r, 2, 30}]] (* Vincenzo Librandi, Jul 26 2019 *)
|
|
PROG
|
(Magma) [1] cat [(1/4)*(1+5^(n-2)+2*(2-(-1)^n)*5^((n div 2)-1)): n in [2..30]]; // Vincenzo Librandi, Jul 26 2019
(Sage)
P.<x> = PowerSeriesRing(ZZ, default_prec=prec)
def g(x): return x*(10*x^4-21*x^3+3*x^2+5*x-1)/((x-1)*(5*x-1)*(5*x^2-1))
return P(g(x)).list()
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from Petros Hadjicostas, Jul 24 2019 using the "master formula" in the references.
|
|
STATUS
|
approved
|
|
|
|