login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287057
a(n) = 2*n^2 + n - (n+1) mod 2.
1
3, 9, 21, 35, 55, 77, 105, 135, 171, 209, 253, 299, 351, 405, 465, 527, 595, 665, 741, 819, 903, 989, 1081, 1175, 1275, 1377, 1485, 1595, 1711, 1829, 1953, 2079, 2211, 2345, 2485, 2627, 2775, 2925, 3081, 3239, 3403, 3569, 3741, 3915, 4095
OFFSET
1,1
COMMENTS
Let r(n) = (a(n)-1)/a(n) if n mod 2 = 1, (a(n)+1)/a(n) otherwise; then Product_{n>=1} r(n) = (2/3) * (10/9) * (20/21) * (36/35) * (54/55) * (78/77) * (104/105) * (136/135) * ... = agm(1,sqrt(2))^2/2 = 0.7177700110461299978211932237.
FORMULA
G.f.: x*(3+3*x+3*x^2-x^3)/((1+x)*(1-x)^3). - Robert Israel, Aug 11 2017
MAPLE
seq(2*n^2 + n - ((n+1) mod 2), n = 1 .. 30); # Robert Israel, Aug 11 2017
MATHEMATICA
a[n_] := 2 n^2 + n - Mod[n + 1, 2]; Array[a, 50] (* Robert G. Wilson v, Aug 10 2017 *)
PROG
(PARI) {for(n=1, 100, print1(2*n^2+n-(n+1)%2", "))}
(Magma) [2*n^2+n-(n+1) mod 2: n in [1..60]]; // Vincenzo Librandi, Aug 12 2017
CROSSREFS
Sequence in context: A031886 A147458 A169927 * A048780 A009864 A128127
KEYWORD
nonn
AUTHOR
Dimitris Valianatos, Jun 24 2017
STATUS
approved