login
A287055
Numbers n such that uphi(n) = uphi(n+1), where uphi(n) is the unitary totient function (A047994).
10
1, 20, 35, 143, 194, 208, 740, 1119, 1220, 1299, 1419, 1803, 1892, 2232, 2623, 3705, 3716, 3843, 4995, 5031, 5183, 5186, 5635, 7868, 10659, 17948, 18507, 18914, 21007, 23616, 25388, 25545, 30380, 30744, 31599, 32304, 34595, 37820, 38024, 47067, 60767, 70394
OFFSET
1,2
COMMENTS
The unitary version of A001274 (phi(n) = phi(n+1)). The first terms that are common to both sequences are: 1, 194, 3705, 5186, 25545, 388245, 1659585, 2200694, 2521694, 2619705, 3289934, 4002405, 5781434, 6245546, 6372794, 8338394.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..2198 (terms 1..207 from Amiram Eldar)
EXAMPLE
uphi(20) = uphi(21) = 12, thus 20 is in the sequence.
MATHEMATICA
uphi[n_] := If[n==1, 1, (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]]; a={}; u1=0; For[k=0, k<10^5, k++; u2=uphi[k]; If[u1==u2, a = AppendTo[a, k-1]]; u1=u2]; a
PROG
(PARI) uphi(n) = my(f = factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2]-1);
isok(n) = uphi(n+1) == uphi(n); \\ Michel Marcus, May 20 2017
(Python)
from math import prod
from sympy import factorint
A287055_list, a, n = [], 1, 1
while n < 10**5:
b = prod(p**e-1 for p, e in factorint(n+1).items())
if a == b:
A287055_list.append(n)
a, n = b, n+1 # Chai Wah Wu, Sep 24 2021
CROSSREFS
Sequence in context: A254363 A229356 A048066 * A326403 A335251 A135801
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 18 2017
STATUS
approved