|
|
A287055
|
|
Numbers n such that uphi(n) = uphi(n+1), where uphi(n) is the unitary totient function (A047994).
|
|
10
|
|
|
1, 20, 35, 143, 194, 208, 740, 1119, 1220, 1299, 1419, 1803, 1892, 2232, 2623, 3705, 3716, 3843, 4995, 5031, 5183, 5186, 5635, 7868, 10659, 17948, 18507, 18914, 21007, 23616, 25388, 25545, 30380, 30744, 31599, 32304, 34595, 37820, 38024, 47067, 60767, 70394
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The unitary version of A001274 (phi(n) = phi(n+1)). The first terms that are common to both sequences are: 1, 194, 3705, 5186, 25545, 388245, 1659585, 2200694, 2521694, 2619705, 3289934, 4002405, 5781434, 6245546, 6372794, 8338394.
|
|
LINKS
|
Chai Wah Wu, Table of n, a(n) for n = 1..2198 (terms 1..207 from Amiram Eldar)
|
|
EXAMPLE
|
uphi(20) = uphi(21) = 12, thus 20 is in the sequence.
|
|
MATHEMATICA
|
uphi[n_] := If[n==1, 1, (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]]; a={}; u1=0; For[k=0, k<10^5, k++; u2=uphi[k]; If[u1==u2, a = AppendTo[a, k-1]]; u1=u2]; a
|
|
PROG
|
(PARI) uphi(n) = my(f = factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2]-1);
isok(n) = uphi(n+1) == uphi(n); \\ Michel Marcus, May 20 2017
(Python)
from math import prod
from sympy import factorint
A287055_list, a, n = [], 1, 1
while n < 10**5:
b = prod(p**e-1 for p, e in factorint(n+1).items())
if a == b:
A287055_list.append(n)
a, n = b, n+1 # Chai Wah Wu, Sep 24 2021
|
|
CROSSREFS
|
Cf. A001274, A047994.
Sequence in context: A254363 A229356 A048066 * A326403 A335251 A135801
Adjacent sequences: A287052 A287053 A287054 * A287056 A287057 A287058
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Amiram Eldar, May 18 2017
|
|
STATUS
|
approved
|
|
|
|