OFFSET
1,2
COMMENTS
The unitary version of A001274 (phi(n) = phi(n+1)). The first terms that are common to both sequences are: 1, 194, 3705, 5186, 25545, 388245, 1659585, 2200694, 2521694, 2619705, 3289934, 4002405, 5781434, 6245546, 6372794, 8338394.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..2198 (terms 1..207 from Amiram Eldar)
EXAMPLE
uphi(20) = uphi(21) = 12, thus 20 is in the sequence.
MATHEMATICA
uphi[n_] := If[n==1, 1, (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]]; a={}; u1=0; For[k=0, k<10^5, k++; u2=uphi[k]; If[u1==u2, a = AppendTo[a, k-1]]; u1=u2]; a
PROG
(PARI) uphi(n) = my(f = factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2]-1);
isok(n) = uphi(n+1) == uphi(n); \\ Michel Marcus, May 20 2017
(Python)
from math import prod
from sympy import factorint
A287055_list, a, n = [], 1, 1
while n < 10**5:
b = prod(p**e-1 for p, e in factorint(n+1).items())
if a == b:
A287055_list.append(n)
a, n = b, n+1 # Chai Wah Wu, Sep 24 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 18 2017
STATUS
approved