login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285889
The smaller of the lexicographically least pair (x, y) such that 0 < x < y and sigma(x) = sigma(y) = n + x + y.
3
220, 48, 174, 390, 102, 280, 160, 500, 66, 132, 54, 24280, 992, 560, 140, 168, 60, 10360, 1120, 1232, 198, 210, 132, 2170, 520, 1520, 96, 168, 330, 732, 60, 4424, 270, 540, 144, 1000, 1484, 4080, 220, 840, 1144, 16500, 1988, 5456, 210, 528, 150, 4158, 1180, 12236
OFFSET
0,1
COMMENTS
In the first 1000 terms the most repeated number is 840 with 15 occurrences.
LINKS
EXAMPLE
a(0) = 220: sigma(220) = sigma(284) = 220 + 284 = 504;
a(1) = 48: sigma(48) = sigma(75) = 48 + 75 + 1 = 124;
a(2) = 174: sigma(174) = sigma(184) = 174 + 184 + 2 = 360.
MAPLE
with(numtheory): P:=proc(q) local a, b, k, n; for n from 0 to q do for k from 1 to q do
a:=sigma(k)-k-n; b:=sigma(a)-a-n; if a>0 and b=k and a<>b then print(k); break;
fi; od; od; end: P(10^9);
MATHEMATICA
Table[m = 1; While[MissingQ@ Set[k, SelectFirst[Range[m - 1], DivisorSigma[1, m] == DivisorSigma[1, #] == m + # + n &]], m++]; {k, m}, {n, 0, 10}][[All, 1]] (* Version 10.2, or *)
Do[m = 1; While[Set[k, Module[{k = 1}, While[! Xor[DivisorSigma[1, m] == DivisorSigma[1, k] == m + k + n, k >= m], k++]; k]] >= m, m++]; Print@ k, {n, 0, 10}] (* Michael De Vlieger, Apr 28 2017 *)
PROG
(PARI) getfirstterms(n)={my(L:list, S:list, k:small, t); L=List(); S=List([1, 3]); k=0; forstep(i=3, +oo, 1, listput(S, sigma(i)); forvec(j=[[2, i], [2, i]], t=vecsum(j)+k; if((S[j[1]]==t)&&(t==S[j[2]]), listput(L, j[1]); if(k==n, break(2), k++)), 2)); return(Vec(L))} \\ R. J. Cano, May 03 2017
CROSSREFS
See first terms of A002025 and A005276.
Sequence in context: A166836 A200827 A286441 * A173619 A157645 A157673
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Apr 28 2017
STATUS
approved