|
|
A005276
|
|
Betrothed (or quasi-amicable) numbers.
(Formerly M5291)
|
|
15
|
|
|
48, 75, 140, 195, 1050, 1575, 1648, 1925, 2024, 2295, 5775, 6128, 8892, 9504, 16587, 20735, 62744, 75495, 186615, 196664, 199760, 206504, 219975, 266000, 309135, 312620, 507759, 526575, 544784, 549219, 573560, 587460, 817479, 1000824, 1057595, 1081184
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Members of a pair (m,n) such that sigma(m)=sigma(n)=m+n+1, where sigma=A000203. - M. F. Hasler, Nov 04 2008
Also members of a pair (m,k) such that m = sum of nontrivial divisors of k and k = sum of nontrivial divisors of m. - Juri-Stepan Gerasimov, Sep 11 2009
|
|
REFERENCES
|
R. K. Guy, Unsolved Problems in Number Theory, B5.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
bnoQ[n_]:=Module[{dsn=DivisorSigma[1, n], m, dsm}, m=dsn-n-1; dsm= DivisorSigma[ 1, m]; dsm==dsn==n+m+1]; Select[Range[2, 1100000], bnoQ] (* Harvey P. Dale, May 12 2012 *)
|
|
PROG
|
(PARI) isA005276(n) = { local(s=sigma(n)); s>n+1 & sigma(s-n-1)==s }
for( n=1, 10^6, isA005276(n) & print1(n", ")) \\ M. F. Hasler, Nov 04 2008
(Haskell)
a005276 n = a005276_list !! (n-1)
a005276_list = filter p [1..] where
p z = p' z [0, z] where
p' x ts = if y `notElem` ts then p' y (y:ts) else y == z
where y = a048050 x
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|