login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211721
Number of -3..3 arrays x(i) of n+1 elements i=1..n+1 with set{t,u,v in 0,1}((x[i+t]+x[j+u]+x[k+v])*(-1)^(t+u+v)) having two or four distinct values for every i,j,k<=n.
1
48, 74, 120, 210, 376, 700, 1312, 2508, 4800, 9288, 17968, 35000, 68144, 133312, 260688, 511616, 1003728, 1974896, 3884688, 7659696, 15100048, 29828560, 58914064, 116565456, 230605584, 456911760, 905224720, 1795793552, 3562275344
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) + 4*a(n-2) - 18*a(n-3) + 2*a(n-4) + 30*a(n-5) - 16*a(n-6) - 12*a(n-7) + 8*a(n-8).
Empirical g.f.: 2*x*(24 - 35*x - 147*x^2 + 209*x^3 + 251*x^4 - 348*x^5 - 102*x^6 + 140*x^7) / ((1 - x)*(1 - 2*x)*(1 - 2*x^2)*(1 - 4*x^2 + 2*x^4)). - Colin Barker, Jul 20 2018
EXAMPLE
Some solutions for n=5:
..3...-3....2...-1...-2....3...-1...-2....3....1...-3....3....0...-2...-1....3
.-3...-2...-2....0...-2...-3...-1...-2....3....1...-1....3....1....2....0....3
.-3...-1....2....1....2...-3....1....2...-3...-1...-3....3....0...-2....1....3
..3....0....2....0...-2...-3...-1...-2....3....1...-1....3...-1...-2....2...-3
..3...-1...-2....1...-2....3...-1....2....3...-1...-3....3....0....2....1....3
..3...-2....2....2....2...-3...-1...-2...-3...-1...-1....3...-1....2....2...-3
CROSSREFS
Sequence in context: A033821 A334899 A165039 * A057533 A005276 A328370
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 20 2012
STATUS
approved