login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211722
Number of -3..3 arrays x(i) of n+1 elements i=1..n+1 with set{t,u,v in 0,1}((x[i+t]+x[j+u]+x[k+v])*(-1)^(t+u+v)) having two, three or four distinct values for every i,j,k<=n.
1
48, 82, 140, 250, 448, 824, 1520, 2852, 5364, 10208, 19464, 37428, 72080, 139688, 271012, 528328, 1030776, 2018668, 3955520, 7774312, 15285508, 30128648, 59399624, 117351116, 231876816, 458968664, 908552868, 1801178616, 3570988568
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) + 2*a(n-2) - 25*a(n-3) + 16*a(n-4) + 46*a(n-5) - 48*a(n-6) - 26*a(n-7) + 36*a(n-8) + 4*a(n-9) - 8*a(n-10).
Empirical g.f.: 2*x*(24 - 55*x - 142*x^2 + 363*x^3 + 225*x^4 - 744*x^5 - 65*x^6 + 534*x^7 - 14*x^8 - 124*x^9) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - 4*x^2 + 2*x^4)). - Colin Barker, Jul 20 2018
EXAMPLE
Some solutions for n=5:
.-1...-1...-3...-3....0...-3...-1....3...-2....1...-2...-2....1....0...-3....2
.-1...-1....1...-3...-3...-3....0....3...-1....1....1...-1....2...-1....3....1
.-1....2...-3....3....0...-3....1...-3....0...-1....1....0....1....0...-3....0
.-1...-1....1....3...-3...-3....2...-3....1....1...-2....1....0...-1...-3...-1
..1...-1...-3....3....0...-3....1....3....2....1....1....2...-1....0...-3....0
.-1....2....1....3....3....3....0....3....1...-1....1....3....0....1...-3...-1
CROSSREFS
Sequence in context: A065911 A260841 A260767 * A260834 A260760 A260501
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 20 2012
STATUS
approved