login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of -3..3 arrays x(i) of n+1 elements i=1..n+1 with set{t,u,v in 0,1}((x[i+t]+x[j+u]+x[k+v])*(-1)^(t+u+v)) having two, three or four distinct values for every i,j,k<=n.
1

%I #8 Jul 20 2018 06:02:12

%S 48,82,140,250,448,824,1520,2852,5364,10208,19464,37428,72080,139688,

%T 271012,528328,1030776,2018668,3955520,7774312,15285508,30128648,

%U 59399624,117351116,231876816,458968664,908552868,1801178616,3570988568

%N Number of -3..3 arrays x(i) of n+1 elements i=1..n+1 with set{t,u,v in 0,1}((x[i+t]+x[j+u]+x[k+v])*(-1)^(t+u+v)) having two, three or four distinct values for every i,j,k<=n.

%H R. H. Hardin, <a href="/A211722/b211722.txt">Table of n, a(n) for n = 1..58</a>

%F Empirical: a(n) = 4*a(n-1) + 2*a(n-2) - 25*a(n-3) + 16*a(n-4) + 46*a(n-5) - 48*a(n-6) - 26*a(n-7) + 36*a(n-8) + 4*a(n-9) - 8*a(n-10).

%F Empirical g.f.: 2*x*(24 - 55*x - 142*x^2 + 363*x^3 + 225*x^4 - 744*x^5 - 65*x^6 + 534*x^7 - 14*x^8 - 124*x^9) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - 4*x^2 + 2*x^4)). - _Colin Barker_, Jul 20 2018

%e Some solutions for n=5:

%e .-1...-1...-3...-3....0...-3...-1....3...-2....1...-2...-2....1....0...-3....2

%e .-1...-1....1...-3...-3...-3....0....3...-1....1....1...-1....2...-1....3....1

%e .-1....2...-3....3....0...-3....1...-3....0...-1....1....0....1....0...-3....0

%e .-1...-1....1....3...-3...-3....2...-3....1....1...-2....1....0...-1...-3...-1

%e ..1...-1...-3....3....0...-3....1....3....2....1....1....2...-1....0...-3....0

%e .-1....2....1....3....3....3....0....3....1...-1....1....3....0....1...-3...-1

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 20 2012