login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261709
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00000001 00000101 or 00000111.
6
48, 76, 76, 172, 134, 172, 338, 270, 270, 338, 628, 462, 468, 462, 628, 1298, 892, 662, 662, 892, 1298, 2752, 1751, 1168, 675, 1168, 1751, 2752, 5526, 3299, 2372, 734, 734, 2372, 3299, 5526, 10972, 6324, 3700, 1443, 676, 1443, 3700, 6324, 10972, 22462
OFFSET
1,1
COMMENTS
Table starts
....48....76...172..338..628.1298.2752.5526.10972.22462.46160.93354.188556
....76...134...270..462..892.1751.3299.6324.12389.23874.46352.90232.175147
...172...270...468..662.1168.2372.3700.6158.11812.19350.31112.58428..98160
...338...462...662..675..734.1443.1416.1486..2556..3004..3232..4244...7152
...628...892..1168..734..676.1818..984..748..1096..1168...880...958...2420
..1298..1751..2372.1443.1818.4867.1294..748...968..1112...900..1504...4076
..2752..3299..3700.1416..984.1294..744..632...812...874...656...764...1052
..5526..6324..6158.1486..748..748..632..536...560...672...608...648....722
.10972.12389.11812.2556.1096..968..812..560...624...580...732...696....732
.22462.23874.19350.3004.1168.1112..874..672...580...628...702...654....668
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 9] for n>11
k=2: [order 15] for n>17
k=3: [order 14] for n>20
k=4: a(n) = 3*a(n-7) +5*a(n-10) +a(n-13) -a(n-14) -a(n-17) -2*a(n-21) for n>27
k=5: a(n) = 2*a(n-7) -2*a(n-21) +a(n-28) for n>34
k=6: a(n) = a(n-14) for n>21
k=7: a(n) = a(n-14) for n>21
Empirical periodic continuations for column k:
k=6: period of length 14 starting at n=8: 748 968 1112 900 1504 4076 822 722 1018 1304 1188 1852 4804 1174
k=7: period of length 14 starting at n=8: 632 812 874 656 764 1052 600 540 692 824 688 780 1150 704
Empirical periodic continuations for diagonal:
diagonal: period of length 14 starting at n=8: 536 624 628 712 676 832 456 568 1036 704 616 696 2288 664
Empirical periodic tile pattern from columns 8-21 and rows 8-21:
..536..560..672..608..648..722..660..552..602..728..596..552..620..612
..560..624..580..732..696..732..686..604..830..856.1110..824..780..772
..672..580..628..702..654..668..588..516..552..666..756..760..864..814
..608..732..702..712..852..824..538..584..740..700..664..552..688..616
..648..696..654..852..676.1000..640..780.1364..878..942..686.1010..704
..722..732..668..824.1000..832..580..696..782..860.1112.1348.1560..932
..660..686..588..538..640..580..456..568..566..538..570..656..678..560
..552..604..516..584..780..696..568..568..646..572..572..684..594..520
..602..830..552..740.1364..782..566..646.1036..828.1118.1492..830..652
..728..856..666..700..878..860..538..572..828..704..754..984.1056..764
..596.1110..756..664..942.1112..570..572.1118..754..616..642..976..648
..552..824..760..552..686.1348..656..684.1492..984..642..696.1358..720
..620..780..864..688.1010.1560..678..594..830.1056..976.1358.2288.1030
..612..772..814..616..704..932..560..520..652..764..648..720.1030..664
EXAMPLE
Some solutions for n=7 k=4
..0..0..0..0..0..1....1..0..1..0..1..0....1..0..0..1..0..0....1..0..0..0..0..0
..1..0..0..0..1..0....0..1..0..0..0..0....0..0..0..0..0..0....0..1..0..0..0..1
..0..1..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..1..0
..0..0..0..0..0..0....0..0..0..0..1..0....0..0..1..0..0..1....0..0..0..0..0..0
..0..0..0..0..1..0....1..0..0..1..0..0....0..1..0..0..0..0....0..1..0..0..0..0
..1..0..0..1..0..0....0..0..0..0..0..0....0..0..0..0..0..1....0..0..1..0..0..1
..0..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..1..0....0..0..0..0..0..0
..0..0..0..0..0..0....0..0..0..1..0..0....0..1..0..0..0..0....0..0..0..0..0..1
..0..0..1..0..0..1....1..0..0..0..1..0....1..0..0..0..0..0....0..1..0..0..1..1
CROSSREFS
Sequence in context: A005276 A328370 A143722 * A261704 A260370 A260363
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 28 2015
STATUS
approved