OFFSET
1,1
COMMENTS
Table starts
....48....76...172..338..628.1298.2752.5526.10972.22462.46160.93354.188556
....76...134...270..462..892.1751.3299.6324.12389.23874.46352.90232.175147
...172...270...468..662.1168.2372.3700.6158.11812.19350.31112.58428..98160
...338...462...662..675..734.1443.1416.1486..2556..3004..3232..4244...7152
...628...892..1168..734..676.1818..984..748..1096..1168...880...958...2420
..1298..1751..2372.1443.1818.4867.1294..748...968..1112...900..1504...4076
..2752..3299..3700.1416..984.1294..744..632...812...874...656...764...1052
..5526..6324..6158.1486..748..748..632..536...560...672...608...648....722
.10972.12389.11812.2556.1096..968..812..560...624...580...732...696....732
.22462.23874.19350.3004.1168.1112..874..672...580...628...702...654....668
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..3274
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 9] for n>11
k=2: [order 15] for n>17
k=3: [order 14] for n>20
k=4: a(n) = 3*a(n-7) +5*a(n-10) +a(n-13) -a(n-14) -a(n-17) -2*a(n-21) for n>27
k=5: a(n) = 2*a(n-7) -2*a(n-21) +a(n-28) for n>34
k=6: a(n) = a(n-14) for n>21
k=7: a(n) = a(n-14) for n>21
Empirical periodic continuations for column k:
k=6: period of length 14 starting at n=8: 748 968 1112 900 1504 4076 822 722 1018 1304 1188 1852 4804 1174
k=7: period of length 14 starting at n=8: 632 812 874 656 764 1052 600 540 692 824 688 780 1150 704
Empirical periodic continuations for diagonal:
diagonal: period of length 14 starting at n=8: 536 624 628 712 676 832 456 568 1036 704 616 696 2288 664
Empirical periodic tile pattern from columns 8-21 and rows 8-21:
..536..560..672..608..648..722..660..552..602..728..596..552..620..612
..560..624..580..732..696..732..686..604..830..856.1110..824..780..772
..672..580..628..702..654..668..588..516..552..666..756..760..864..814
..608..732..702..712..852..824..538..584..740..700..664..552..688..616
..648..696..654..852..676.1000..640..780.1364..878..942..686.1010..704
..722..732..668..824.1000..832..580..696..782..860.1112.1348.1560..932
..660..686..588..538..640..580..456..568..566..538..570..656..678..560
..552..604..516..584..780..696..568..568..646..572..572..684..594..520
..602..830..552..740.1364..782..566..646.1036..828.1118.1492..830..652
..728..856..666..700..878..860..538..572..828..704..754..984.1056..764
..596.1110..756..664..942.1112..570..572.1118..754..616..642..976..648
..552..824..760..552..686.1348..656..684.1492..984..642..696.1358..720
..620..780..864..688.1010.1560..678..594..830.1056..976.1358.2288.1030
..612..772..814..616..704..932..560..520..652..764..648..720.1030..664
EXAMPLE
Some solutions for n=7 k=4
..0..0..0..0..0..1....1..0..1..0..1..0....1..0..0..1..0..0....1..0..0..0..0..0
..1..0..0..0..1..0....0..1..0..0..0..0....0..0..0..0..0..0....0..1..0..0..0..1
..0..1..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..1..0
..0..0..0..0..0..0....0..0..0..0..1..0....0..0..1..0..0..1....0..0..0..0..0..0
..0..0..0..0..1..0....1..0..0..1..0..0....0..1..0..0..0..0....0..1..0..0..0..0
..1..0..0..1..0..0....0..0..0..0..0..0....0..0..0..0..0..1....0..0..1..0..0..1
..0..0..0..0..0..0....1..0..0..0..0..0....0..0..0..0..1..0....0..0..0..0..0..0
..0..0..0..0..0..0....0..0..0..1..0..0....0..1..0..0..0..0....0..0..0..0..0..1
..0..0..1..0..0..1....1..0..0..0..1..0....1..0..0..0..0..0....0..1..0..0..1..1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 28 2015
STATUS
approved