login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285887
Primes of the form (1 + x)^y + (-x)^y where y is a divisor of x.
4
13, 37, 41, 127, 271, 313, 421, 881, 1013, 1201, 1801, 1861, 2113, 2269, 2381, 2791, 3613, 4651, 5101, 5419, 6211, 7057, 7321, 9941, 10513, 10657, 12097, 13267, 13613, 14281, 16381, 19927, 20201, 21013, 21841, 24421, 24571, 26227, 30013, 33391, 34061, 35317, 41761, 45757, 47741, 49297
OFFSET
1,1
COMMENTS
If x = y then: 13, 37, 881, 4651, 1273609, ...
LINKS
J. S. Gerasimov, x^(y + 1) - y^x, SeqFan list, Aug 18 2014.
EXAMPLE
13 is in this sequence because (1 + 2)^2 + (-2)^2 = 13 is prime where 2 is divisor of 2.
MAPLE
N:= 100000: # To get terms <= N
Res:= NULL:
for y from 2 while 2^y -1 <= N do
z:= y/2^padic:-ordp(y, 2);
if z > 1 and (z <> y or not isprime(z)) then next fi;
for x from y by y do
v:= (1+x)^y + (-x)^y;
if v > N then break fi;
if isprime(v) then Res:= Res, v; fi
od od:
sort(convert({Res}, list)); # Robert Israel, Jan 05 2020
MATHEMATICA
Union@ Flatten@ Table[Select[Map[(1 + n)^# + (-n)^# &, Divisors@ n], PrimeQ], {n, 200}] (* Michael De Vlieger, Apr 29 2017 *)
CROSSREFS
Sequence in context: A220462 A280997 A185006 * A063913 A119705 A343895
KEYWORD
nonn,changed
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jan 11 2020
STATUS
approved