login
A284780
The number of partitions of n which represent Chomp positions with Sprague-Grundy value 7.
1
0, 0, 0, 0, 0, 0, 0, 10, 0, 8, 6, 4, 10, 2, 14, 22, 14, 24, 30, 24, 30, 46, 56, 75, 64, 114, 108, 161, 142, 209, 254, 332, 407, 398, 514, 609, 755, 860, 972, 1250, 1382, 1578, 1920, 2293, 2685, 3131, 3509, 4412, 4792, 5761, 6824, 7434, 9100, 10329, 12144, 14012, 16342, 18703, 21795, 25174, 28442, 33173, 38295, 43787, 50554
OFFSET
1,8
COMMENTS
Chomp positions with Sprague-Grundy value 0 are the losing positions. Their number is given in A112470.
REFERENCES
P. M. Grundy, Mathematics and games, Eureka 2 (1939), 6-8; reprinted (1964), Eureka 27, 9-11.
LINKS
Thomas S. Ferguson, Game Theory (lecture notes + exercise questions for a course on Combinatorial Game Theory).
P. M. Grundy, Mathematics and games, Eureka (The Archimedeans' Journal), No. 2, 1939, pp. 6-8. [Annotated scanned copy. My former colleague and coauthor Florence Jessie MacWilliams (nee Collinson), who was a student at Cambridge University in 1939, gave me this journal. - N. J. A. Sloane, Nov 17 2018]
R. Sprague, Über mathematische Kampfspiele, Tohoku Math. J. 41 (1936), 438-444.
R. Sprague, Über zwei Abarten von Nim, Tohoku Math. J. 43 (1937), 351-354.
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas J Wolf, Apr 02 2017
STATUS
approved