login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284778
Number of self-avoiding planar walks of length n+1 starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.
10
0, 1, 1, 4, 8, 22, 54, 142, 370, 983, 2627, 7086, 19238, 52561, 144377, 398518, 1104794, 3074809, 8588093, 24064642, 67630898, 190584766, 538412426, 1524554956, 4326119748, 12300296227, 35037658099, 99977847308, 285741659312, 817901027070, 2344475178110
OFFSET
0,4
COMMENTS
From Gus Wiseman, Nov 15 2022: (Start)
Conjecture: Also the number of topologically series-reduced ordered rooted trees with n + 3 vertices and more than one branch of the root. This would imply a(n) = A187306(n+1) - A005043(n+1). For example, the a(1) = 1 through a(5) = 22 trees are:
(ooo) (oooo) (ooooo) (oooooo) (ooooooo)
((oo)oo) ((oo)ooo) ((oo)oooo)
(o(oo)o) ((ooo)oo) ((ooo)ooo)
(oo(oo)) (o(oo)oo) ((oooo)oo)
(o(ooo)o) (o(oo)ooo)
(oo(oo)o) (o(ooo)oo)
(oo(ooo)) (o(oooo)o)
(ooo(oo)) (oo(oo)oo)
(oo(ooo)o)
(oo(oooo))
(ooo(oo)o)
(ooo(ooo))
(oooo(oo))
(((oo)o)oo)
((o(oo))oo)
((oo)(oo)o)
((oo)o(oo))
(o((oo)o)o)
(o(o(oo))o)
(o(oo)(oo))
(oo((oo)o))
(oo(o(oo)))
(End)
LINKS
FORMULA
G.f.: (1-2*x-x^2-sqrt(1-4*x+2*x^2+4*x^3-3*x^4))/(2*(x+1)*x^3).
Recursion: see Maple program.
a(n) = A284414(n,n+1) = A284652(n,n+1).
a(n) ~ 3^(n+5/2) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 02 2017
a(n) = Sum_{k=0..floor(n/2)} (k+1)^2/(n-k)*Sum_{i=0..n-1-2*k} C(i,n-1-2*k-i)*C(n-k,i), n>0, a(0)=0. - Vladimir Kruchinin, Mar 20 2023
MAPLE
a:= proc(n) option remember; `if`(n<3, (3-n)*n/2,
((n^2-n+3)*a(n-1)+(5*n-2)*n*a(n-2)+
3*(n-1)*n*a(n-3))/((n+3)*(n-1)))
end:
seq(a(n), n=0..35);
MATHEMATICA
CoefficientList[Series[(1 - 2*x - x^2 - Sqrt[1 - 4*x + 2*x^2 + 4*x^3 - 3*x^4])/(2*(x + 1)*x^3), {x, 0, 50}], x] (* Indranil Ghosh, Apr 02 2017 *)
PROG
(Maxima)
a(n):=if n=0 then 0 else sum(((k+1)^2*sum(binomial(i, n-1-2*k-i)*binomial(n-k, i), i, 0, n-1-2*k))/(n-k), k, 0, floor((n)/2)); /* Vladimir Kruchinin, Mar 20 2023 */
CROSSREFS
First upper diagonal of A284414, A284652.
Sequence in context: A297339 A290138 A266922 * A057583 A129788 A170938
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Apr 02 2017
STATUS
approved