login
A284781
The number of partitions of n which represent Chomp positions with Sprague-Grundy value 8.
2
0, 0, 0, 0, 0, 0, 0, 0, 2, 8, 8, 8, 8, 14, 20, 22, 22, 24, 26, 20, 34, 34, 62, 50, 60, 67, 108, 136, 167, 181, 246, 256, 354, 352, 500, 567, 688, 705, 925, 1078, 1332, 1644, 1795, 2217, 2642, 2974, 3566, 4208, 4791, 5846, 6775, 7869, 9206, 10589, 11962, 14486, 16365, 19080, 21509, 25460, 29335, 33784, 38563, 44234, 51093
OFFSET
1,9
COMMENTS
Chomp positions with Sprague-Grundy value 0 are the losing positions. Their number is given in A112470.
REFERENCES
P. M. Grundy, Mathematics and games, Eureka 2 (1939), 6-8; reprinted (1964), Eureka 27, 9-11.
LINKS
Thomas S. Ferguson, Game Theory (lecture notes + exercise questions for a course on Combinatorial Game Theory).
P. M. Grundy, Mathematics and games, Eureka (The Archimedeans' Journal), No. 2, 1939, pp. 6-8. [Annotated scanned copy. My former colleague and coauthor Florence Jessie MacWilliams (nee Collinson), who was a student at Cambridge University in 1939, gave me this journal. - N. J. A. Sloane, Nov 17 2018]
R. Sprague, Über mathematische Kampfspiele, Tohoku Math. J. 41 (1936), 438-444.
R. Sprague, Über zwei Abarten von Nim, Tohoku Math. J. 43 (1937), 351-354.
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas J Wolf, Apr 02 2017
STATUS
approved