login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of self-avoiding planar walks of length n+1 starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.
10

%I #34 Mar 21 2023 04:10:41

%S 0,1,1,4,8,22,54,142,370,983,2627,7086,19238,52561,144377,398518,

%T 1104794,3074809,8588093,24064642,67630898,190584766,538412426,

%U 1524554956,4326119748,12300296227,35037658099,99977847308,285741659312,817901027070,2344475178110

%N Number of self-avoiding planar walks of length n+1 starting at (0,0), ending at (n,0), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1) with the restriction that (0,1) is never used below the diagonal and (1,0) is never used above the diagonal.

%C From _Gus Wiseman_, Nov 15 2022: (Start)

%C Conjecture: Also the number of topologically series-reduced ordered rooted trees with n + 3 vertices and more than one branch of the root. This would imply a(n) = A187306(n+1) - A005043(n+1). For example, the a(1) = 1 through a(5) = 22 trees are:

%C (ooo) (oooo) (ooooo) (oooooo) (ooooooo)

%C ((oo)oo) ((oo)ooo) ((oo)oooo)

%C (o(oo)o) ((ooo)oo) ((ooo)ooo)

%C (oo(oo)) (o(oo)oo) ((oooo)oo)

%C (o(ooo)o) (o(oo)ooo)

%C (oo(oo)o) (o(ooo)oo)

%C (oo(ooo)) (o(oooo)o)

%C (ooo(oo)) (oo(oo)oo)

%C (oo(ooo)o)

%C (oo(oooo))

%C (ooo(oo)o)

%C (ooo(ooo))

%C (oooo(oo))

%C (((oo)o)oo)

%C ((o(oo))oo)

%C ((oo)(oo)o)

%C ((oo)o(oo))

%C (o((oo)o)o)

%C (o(o(oo))o)

%C (o(oo)(oo))

%C (oo((oo)o))

%C (oo(o(oo)))

%C (End)

%H Alois P. Heinz, <a href="/A284778/b284778.txt">Table of n, a(n) for n = 0..2105</a>

%H Alois P. Heinz, <a href="/A284778/a284778.gif">Animation of a(6)=54 walks</a>

%F G.f.: (1-2*x-x^2-sqrt(1-4*x+2*x^2+4*x^3-3*x^4))/(2*(x+1)*x^3).

%F Recursion: see Maple program.

%F a(n) = A284414(n,n+1) = A284652(n,n+1).

%F a(n) ~ 3^(n+5/2) / (4*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Apr 02 2017

%F a(n) = Sum_{k=0..floor(n/2)} (k+1)^2/(n-k)*Sum_{i=0..n-1-2*k} C(i,n-1-2*k-i)*C(n-k,i), n>0, a(0)=0. - _Vladimir Kruchinin_, Mar 20 2023

%p a:= proc(n) option remember; `if`(n<3, (3-n)*n/2,

%p ((n^2-n+3)*a(n-1)+(5*n-2)*n*a(n-2)+

%p 3*(n-1)*n*a(n-3))/((n+3)*(n-1)))

%p end:

%p seq(a(n), n=0..35);

%t CoefficientList[Series[(1 - 2*x - x^2 - Sqrt[1 - 4*x + 2*x^2 + 4*x^3 - 3*x^4])/(2*(x + 1)*x^3), {x, 0, 50}], x] (* _Indranil Ghosh_, Apr 02 2017 *)

%o (Maxima)

%o a(n):=if n=0 then 0 else sum(((k+1)^2*sum(binomial(i,n-1-2*k-i)*binomial(n-k,i),i,0,n-1-2*k))/(n-k),k,0,floor((n)/2)); /* _Vladimir Kruchinin_, Mar 20 2023 */

%Y First upper diagonal of A284414, A284652.

%Y CF. A005043, A187306.

%K nonn,walk

%O 0,4

%A _Alois P. Heinz_, Apr 02 2017