The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A320227 Assuming the truth of the Collatz conjecture, let T(n,i), i = 1..k be the initial k elements of the Collatz trajectory of n, up to when the first 1 appears, but excluding the 1. a(n) is the number of ordered pairs T(n,i) < T(n,j) such that gcd(T(n,i), T(n,j)) = 1. 0
 0, 0, 10, 0, 4, 11, 58, 0, 84, 4, 40, 12, 12, 62, 47, 0, 25, 89, 89, 4, 6, 43, 36, 13, 117, 13, 3395, 66, 66, 49, 3064, 0, 148, 27, 21, 94, 94, 94, 286, 4, 3246, 6, 184, 46, 42, 39, 2924, 14, 122, 122, 120, 14, 14, 3435, 3374, 70, 231, 70, 247, 51, 63, 3101 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS If the number 1 of the Collatz trajectory is included, we obtain the new sequence b(n) = a(n) + A006577(n). We observe interesting properties for the even and odd values of a(n). First case: a(n) = 0, 4, 6, ..., 2i, ... When a(n) = q even, there exists a subset N(q) = {n_1, n_2, ...} such that a(n_i) = q for i = 1, 2, ... We observe that N(q) = N1(q) union N2(q) (see the table below). Conjecturally, for n = 12, 14, 16, ... N1(q) is finite and the two last elements of the set N1(q) are of the form x and x+1. The elements of N2(q) are of the form {((4^m - 1)/3)*2^k}, k = 0, 1, ... with m = a(n)/2. The set N2(q) is infinite. Second case: a(n) = 11, 13, 15, ... Conjecturally, N1(q) is finite and the two last elements of the set N1(q) are of the form y and y+2. Conjecture: N2(q) = { }. The following table gives the first 17 values of a(n) in ascending order with the corresponding subsets N1(q) and N2(q). +----+--------------------------------------------------------------------+ |a(n)|                              N1(a(n))                              | +----+--------------------------------------------------------------------+ |  0 |{ }                                                                 | |  4 |{ }                                                                 | |  6 |{ }                                                                 | |  8 |{ }                                                                 | | 10 |{3}                                                                 | | 11 |{6}                                                                 | | 12 |{12, 13}                                                            | | 13 |{24, 26}                                                            | | 14 |{48, 52, 53}                                                        | | 15 |{96, 104, 106}                                                      | | 16 |{192, 208, 212, 213}                                                | | 17 |{384, 416, 424, 426}                                                | | 18 |{768, 832, 848, 852, 853}                                           | | 19 |{113, 1536, 1664, 1696, 1704, 706}                                  | | 20 |{226, 3072, 3328, 3392, 3408, 3412, 3413}                           | | 21 |{35, 452, 453, 6144, 6656, 6784, 6816, 6824, 6826}                  | | 22 |{70, 227, 904, 906, 12288, 13312, 13568, 13632, 13648, 13652, 13653}| +----+--------------------------------------------------------------------+ +----+--------------------------------------------------------------------+ |a(n)|                             N2(a(n))                               | +----+--------------------------------------------------------------------+ |  0 |{1, 2, 4, 8, 16, 32, ..., 2^k, ... } (A000079)                      | |  4 |{5, 10, 20, 40, 80, ..., 5*2^k, ...} (A020714)                      | |  6 |{21, 42, 84, 168, 336, 672, ..., ((4^3 - 1)/3)*2^k, ...} (A175805)  | |  8 |{85, 170, 340, 680, ..., ((4^4 - 1)/3)*2^k, ...}                    | | 10 |{341, 682, 1364, 2728, ..., ((4^5 - 1)/3)*2^k, ...}                 | | 11 | { }                                                                | | 12 |{1365, 2730, 5460, ...,((4^6 - 1)/3)*2^k, ...}                      | | 13 | { }                                                                | | 14 |{5461, 10922, ..., ((4^7 - 1)/3)*2^k, ...}                          | | 15 | { }                                                                | | 16 |{21845, 43690, ...,((4^8 - 1)/3)*2^k, ...}                          | | 17 | { }                                                                | | 18 |{87381, 174762, ...,((4^9 - 1)/3)*2^k, ...}                         | | 19 | { }                                                                | | 20 |{349525, 699050, ..., ((4^10 - 1)/3)*2^k, ...}                      | | 21 | { }                                                                | | 22 |{1398101, 2796202, ..., ((4^11 - 1)/3)*2^k, ...}                    | +----+--------------------------------------------------------------------+ LINKS EXAMPLE a(3) = 10 because the Collatz trajectory T(3,i) of 3 up to the number 1 is 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2  and gcd(T(i), T(j)) = 1 for the 10 following pairs of elements of T: (2, 3), (2, 5), (3, 4), (3, 5), (3, 8), (3, 10), (3, 16), (4, 5), (5, 8) and (5, 16). 28 In the general case, a(n) = 10 for n in the set {3} union {341, 682, 1364, 2728, ...,((4^5 - 1)/3)*2^k, ...} with k = 0, 1, 2, ... a(6) = 11 because the Collatz trajectory T(6,i) of 6 up to the number 1 is 6 -> 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2  and gcd(T(i), T(j)) = 1 for the 11 following pairs of elements of T: (2, 3), (2, 5), (3, 4), (3, 5), (3, 8), (3, 10), (3, 16), (4, 5), (5, 6), (5, 8) and (5, 16). MAPLE nn:=1000: for n from 1 to 200 do:    m:=n:lst:={}:       for i from 1 to nn while(m<>1) do:         if irem(m, 2)=0          then          lst:=lst union {m}:m:=m/2:          else          lst:=lst union {m}:m:=3*m+1:        fi:      od:     n0:=nops(lst):it:=0:      for j from 1 to n0-1 do:       for k from j+1 to n0 do:        if gcd(lst[j], lst[k])=1        then         it:=it+1:         else fi:     od:     od:   printf(`%d, `, it): od: CROSSREFS Cf. A000079, A002450, A006370, A006577, A020714, A175805. Sequence in context: A062520 A157962 A063741 * A284780 A010681 A095418 Adjacent sequences:  A320224 A320225 A320226 * A320228 A320229 A320230 KEYWORD nonn AUTHOR Michel Lagneau, Oct 08 2018 EXTENSIONS Definition revised by N. J. A. Sloane, Nov 12 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 19:30 EDT 2020. Contains 334595 sequences. (Running on oeis4.)