%I
%S 0,0,0,0,0,0,0,10,0,8,6,4,10,2,14,22,14,24,30,24,30,46,56,75,64,114,
%T 108,161,142,209,254,332,407,398,514,609,755,860,972,1250,1382,1578,
%U 1920,2293,2685,3131,3509,4412,4792,5761,6824,7434,9100,10329,12144,14012,16342,18703,21795,25174,28442,33173,38295,43787,50554
%N The number of partitions of n which represent Chomp positions with SpragueGrundy value 7.
%C Chomp positions with SpragueGrundy value 0 are the losing positions. Their number is given in A112470.
%D P. M. Grundy, Mathematics and games, Eureka 2 (1939), 68; reprinted (1964), Eureka 27, 911.
%D R. Sprague, Über mathematische Kampfspiele, Tohoku Math. J. 41 (1936), 438444.
%D R. Sprague, Über zwei Abarten von Nim, Tohoku Math. J. 43 (1937), 351354.
%H Thomas S. Ferguson, <a href="https://www.math.ucla.edu/~tom/Game_Theory/comb.pdf">Game Theory</a> (lecture notes + exercise questions for a course on Combinatorial Game Theory).
%H P. M. Grundy, <a href="/A002188/a002188.pdf">Mathematics and games</a>, Eureka (The Archimedeans' Journal), No. 2, 1939, pp. 68. [Annotated scanned copy. My former colleague and coauthor Florence Jessie MacWilliams (nee Collinson), who was a student at Cambridge University in 1939, gave me this journal.  _N. J. A. Sloane_, Nov 17 2018]
%Y Cf. A112471, A112472, A112473.
%K nonn
%O 1,8
%A _Thomas J Wolf_, Apr 02 2017
