login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283470 a(n) = A004001(A004001(n-1)) XOR A004001(n-A004001(n-1)), a(1) = a(2) = 1. 8
1, 1, 0, 0, 3, 0, 0, 0, 1, 0, 7, 7, 0, 0, 0, 0, 1, 0, 3, 2, 2, 1, 14, 14, 15, 15, 15, 0, 0, 0, 0, 0, 1, 0, 3, 2, 5, 5, 6, 7, 4, 4, 5, 4, 4, 3, 3, 3, 2, 29, 29, 30, 30, 30, 31, 31, 31, 31, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 5, 4, 4, 7, 4, 5, 10, 10, 11, 10, 9, 9, 14, 15, 15, 14, 14, 14, 13, 10, 11, 11, 10, 9, 9, 6, 6, 6, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..32768

FORMULA

a(n) = A004001(A004001(n-1)) XOR A004001(A080677(n-1)), where XOR is bitwise-xor (A003987)

Other identities. For all n >= 1:

a(n) = A283469(n) - A283472(n).

A004001(n) = a(n) + 2*A283472(n).

MATHEMATICA

a[n_] := a[n] = If[n <= 2, 1, a[a[n - 1]] + a[n - a[n - 1]]]; Table[BitXor[a[#], a[n - #]] &@ a[n - 1] + Boole[n <= 2], {n, 107}] (* Michael De Vlieger, Mar 18 2017, after Robert G. Wilson v at A004001 *)

PROG

(Scheme)

(define (A283470 n) (if (<= n 2) 1 (A003987bi (A004001 (A004001 (- n 1))) (A004001 (- n (A004001 (- n 1)))))))

;; A003987bi implements bitwise-XOR (see A003987). Code for A004001 given under that entry.

CROSSREFS

Cf. A003987, A080677, A283468, A283469, A283472, A283471 (positions of zeros), A283473 (positions where coincides with A004001).

Cf. also A283677.

Sequence in context: A069531 A035677 A143276 * A101941 A089313 A052998

Adjacent sequences:  A283467 A283468 A283469 * A283471 A283472 A283473

KEYWORD

nonn

AUTHOR

Antti Karttunen, Mar 18 2017

EXTENSIONS

Erroneous b-file replaced by a correct one - Antti Karttunen, Feb 24 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 04:33 EDT 2019. Contains 328026 sequences. (Running on oeis4.)