login
A283467
a(n) = A005185(n+1-A005185(n)).
4
1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 3, 4, 5, 4, 5, 5, 5, 6, 6, 6, 6, 8, 6, 8, 8, 8, 8, 8, 10, 8, 9, 10, 10, 10, 11, 11, 10, 11, 11, 11, 12, 12, 12, 12, 12, 16, 10, 14, 14, 12, 14, 16, 14, 14, 16, 14, 16, 16, 16, 16, 20, 16, 17, 21, 16, 17, 19, 20, 20, 21, 21, 20, 19, 19, 22, 19, 21, 21, 22, 22, 22, 23, 21, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 32, 17, 32
OFFSET
1,5
COMMENTS
For n >= 2, a(n) gives the left hand summand for the term q(n+1) of Hofstadter Q-sequence (A005185): q(1) = q(2) = 1; q(n) = q(n-q(n-1)) + q(n-q(n-2)) for n > 2.
FORMULA
a(n) = A005185(n + 1 - A005185(n)).
MATHEMATICA
a[1] = a[2] = 1; a[n_] := a[n] = a[n - a[n - 1]] + a[n - a[n - 2]]; Table[a[n + 1 - a[n]], {n, 97}] (* Michael De Vlieger, Mar 22 2017 *)
PROG
(Scheme) (define (A283467 n) (A005185 (- (+ n 1) (A005185 n)))) ;; Code for A005185 given under that entry.
(PARI) q(n) = if(n<3, 1, q(n - q(n - 1)) + q(n - q(n - 2)));
a(n) = q(n + 1 - q(n)); \\ Indranil Ghosh, Mar 22 2017
CROSSREFS
Cf. A005185, A280706 (partial sums), A284173.
Sequence in context: A325120 A064515 A112754 * A045864 A072302 A369715
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 22 2017
STATUS
approved