|
|
A283051
|
|
Positive integers n such that none of the primes of the form k*2^n + 1 (with k odd) divide any Fermat number F(m) = 2^(2^m) + 1, m >= 0.
|
|
0
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Conjecture: sequence is infinite.
a(5) >= 18.
|
|
LINKS
|
Table of n, a(n) for n=1..4.
Proth Search Page, Prime factors of Fermat numbers
Eric Weisstein's World of Mathematics, Fermat Number
|
|
CROSSREFS
|
Cf. A019434, A023394, A228845, A228846, A229857, A231203.
Sequence in context: A054871 A248644 A242197 * A244671 A232531 A182637
Adjacent sequences: A283048 A283049 A283050 * A283052 A283053 A283054
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Arkadiusz Wesolowski, Feb 27 2017
|
|
STATUS
|
approved
|
|
|
|