login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283052
Numbers k such that uphi(k)/phi(k) > uphi(m)/phi(m) for all m < k, where phi(k) is the Euler totient function (A000010) and uphi(k) is the unitary totient function (A047994).
3
1, 4, 8, 16, 32, 36, 72, 144, 216, 288, 432, 864, 1728, 2592, 3600, 5400, 7200, 10800, 21600, 43200, 64800, 108000, 129600, 216000, 259200, 324000, 529200, 1058400, 2116800, 3175200, 5292000, 6350400, 10584000, 12700800, 15876000, 31752000, 63504000, 95256000
OFFSET
1,2
COMMENTS
This sequence is infinite.
a(1) = 1, a(6) = 36, a(15) = 3600 and a(32) = 6350400 are the smallest numbers n such that uphi(n)/phi(n) = 1, 2, 3 and 4. They are squares of 1, 6, 60, and 2520.
Also, coreful superabundant numbers: numbers k with a record value of the coreful abundancy index, A057723(k)/k > A057723(m)/m for all m < k. The two sequences are equivalent since A057723(k)/k = A047994(k)/A000010(k) for all k. - Amiram Eldar, Dec 28 2020
LINKS
EXAMPLE
uphi(k)/phi(k) = 1, 1, 1, 3/2 for k = 1, 2, 3, 4, thus a(1) = 1 and a(2) = 4 since a(4) > a(m) for m < 4.
MATHEMATICA
uphi[n_] := If[n == 1, 1, (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@
FactorInteger[n]))[[1]]]; a = {}; rmax = 0; For[k = 0, k < 10^9, k++; r = uphi[k]/EulerPhi[k]; If[r > rmax, rmax = r; a = AppendTo[a, k]]]; a
PROG
(PARI) uphi(n) = my(f = factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2]-1);
lista(nn) = {my(rmax = 0); for (n=1, nn, if ((newr=uphi(n)/eulerphi(n)) > rmax, print1(n, ", "); rmax = newr); ); } \\ Michel Marcus, May 20 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 19 2017
STATUS
approved