login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A283048
a(n) = (6*n^2)!/((n^2)!^6).
0
1, 720, 3246670537110000, 101097362223624462291180422369532000000, 11820969246826954556547676599863670334721199951925900837836206749590000
OFFSET
0,2
COMMENTS
For n >= 1, a(n) is the number of possible combinations of an n X n X n Rubik's cube with randomly placed stickers.
FORMULA
a(n) = (6*n^2)!/((n^2)!^6).
MATHEMATICA
Table[(6*n^2)!/(n^2)!^6, {n, 0, 4}]
PROG
(Magma) [Factorial(6*n^2)/Factorial(n^2)^6: n in [0..4]];
(PARI) a(n)=(6*n^2)!/(n^2)!^6;
CROSSREFS
Cf. A201555.
Sequence in context: A072238 A271946 A172727 * A282021 A186561 A119451
KEYWORD
nonn,easy
AUTHOR
STATUS
approved