|
|
A282900
|
|
Least non-infinitary divisor of A162643(n).
|
|
3
|
|
|
2, 3, 2, 2, 3, 2, 5, 2, 4, 2, 2, 3, 2, 7, 5, 2, 2, 3, 2, 2, 3, 5, 2, 2, 3, 2, 3, 2, 4, 7, 3, 2, 2, 2, 2, 3, 11, 2, 3, 2, 2, 2, 7, 2, 5, 3, 2, 4, 3, 2, 13, 3, 2, 5, 2, 2, 2, 2, 2, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Let n=q_1*...*q_t, where q_i are distinct increasing terms of A050376. This representation is unique (for n=1 the product is empty). Every subproduct is an infinitary divisor of n. All numbers having at least one non-infinitary divisor form A162643.
|
|
LINKS
|
|
|
EXAMPLE
|
For n=60=3*4*5, no subproduct is 2,6,10,30. They are all non-infinitary divisors of 60. Since 60=A162643(17) then a(17) = 2.
|
|
MATHEMATICA
|
Map[First@ Complement[Divisors@ #, If[# == 1, {1}, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[#] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]] &, Select[Range@ 198, ! IntegerQ@ Log2@ DivisorSigma[0, #] &]] (* Michael De Vlieger, Feb 24 2017, after Paul Abbott at A077609 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|