login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282902
Square array A(n, k) read by antidiagonals downwards: multiplicative order of 2 modulo prime(n)^k, where k runs over the positive integers.
3
2, 6, 4, 18, 20, 3, 54, 100, 21, 10, 162, 500, 147, 110, 12, 486, 2500, 1029, 1210, 156, 8, 1458, 12500, 7203, 13310, 2028, 136, 18, 4374, 62500, 50421, 146410, 26364, 2312, 342, 11, 13122, 312500, 352947, 1610510, 342732, 39304, 6498, 253, 28, 39366, 1562500, 2470629, 17715610, 4455516, 668168, 123462, 5819, 812, 5
OFFSET
2,1
COMMENTS
The number of initial terms in row n with constant values is equal to the highest value of x such that p = prime(n) satisfies 2^(p-1) == 1 (mod p^x).
From Robert Israel, Feb 24 2017: (Start)
a(n,k+1) is either a(n,k) or a(n,k)*prime(n). If it is a(n,k)*prime(n), then a(n,k+j) = a(n,k)*prime(n)^j for all j>=1.
a(n,2) = a(n,1) if and only if prime(n) is a Wieferich prime (A001220).
(End)
LINKS
Robert Israel, Table of n, a(n) for n = 2..10012 (first 142 antidiagonals, flattened)
EXAMPLE
Array A(n, k) starts
2, 6, 18, 54, 162, 486, 1458
4, 20, 100, 500, 2500, 12500, 62500
3, 21, 147, 1029, 7203, 50421, 352947
10, 110, 1210, 13310, 146410, 1610510, 17715610
12, 156, 2028, 26364, 342732, 4455516, 57921708
8, 136, 2312, 39304, 668168, 11358856, 193100552
18, 342, 6498, 123462, 2345778, 44569782, 846825858
MAPLE
seq(seq(numtheory:-order(2, ithprime(i)^(m-i)), i=2..m-1), m=2..10); # Robert Israel, Feb 24 2017
MATHEMATICA
A[n_, k_] := MultiplicativeOrder[2, Prime[n]^k];
Table[A[n-k+1, k], {n, 2, 11}, {k, n-1, 1, -1}] // Flatten (* Jean-François Alcover, Mar 02 2020 *)
PROG
(PARI) a(n, k) = znorder(Mod(2, prime(n)^k))
array(rows, cols) = for(n=2, rows+1, for(k=1, cols, print1(a(n, k), ", ")); print(""))
array(7, 8) \\ print 7 X 8 array
CROSSREFS
Cf. A014664 (column 1), A243905 (column 2).
Cf. A001220.
Sequence in context: A366688 A054786 A269372 * A033457 A133936 A065350
KEYWORD
nonn,tabl
AUTHOR
Felix Fröhlich, Feb 24 2017
STATUS
approved