login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282781
Expansion of phi_{8, 3}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
1
0, 1, 264, 6588, 67648, 390750, 1739232, 5765144, 17318400, 43224597, 103158000, 214360212, 445665024, 815732918, 1521998016, 2574261000, 4433514496, 6975762354, 11411293608, 16983569900, 26433456000, 37980768672, 56591095968, 78310997448
OFFSET
0,3
COMMENTS
Multiplicative because A001160 is. - Andrew Howroyd, Jul 25 2018
LINKS
FORMULA
a(n) = n^3*A001160(n) for n > 0.
a(n) = (6*A282752(n) - 2*A282780(n) - 6*A282102(n) + A008411(n) + A280869(n))/5184.
Sum_{k=1..n} a(k) ~ zeta(6) * n^9 / 9. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 31 2023: (Start)
Multiplicative with a(p^e) = p^(3*e) * (p^(5*e+5)-1)/(p^5-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-8). (End)
MATHEMATICA
a[0]=0; a[n_]:=(n^3)*DivisorSigma[5, n]; Table[a[n], {n, 0, 23}] (* Indranil Ghosh, Feb 21 2017 *)
PROG
(PARI) a(n) = if (n==0, 0, n^3*sigma(n, 5)); \\ Michel Marcus, Feb 21 2017
CROSSREFS
Cf. A282211 (phi_{4, 3}), A282213 (phi_{6, 3}), this sequence (phi_{8, 3}).
Cf. A282752 (E_2^2*E_4^2), A282780 (E_2^3*E_6), A282102 (E_2*E_4*E_6), A008411 (E_4^3), A280869 (E_6^2).
Cf. A001160 (sigma_5(n)), A282050 (n*sigma_5(n)), A282751 (n^2*sigma_5(n)), this sequence (n^3*sigma_5(n)).
Cf. A013664.
Sequence in context: A288995 A092724 A112069 * A223339 A022043 A035315
KEYWORD
nonn,easy,mult
AUTHOR
Seiichi Manyama, Feb 21 2017
STATUS
approved