The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A008411 Theta series of direct sum of 3 copies of E_8 lattice (the Niemeier lattice of type E_8^3). 21
 1, 720, 179280, 16954560, 396974160, 4632858720, 34413301440, 187477879680, 814940600400, 2975469665040, 9486467837280, 27053330840640, 70485969919680, 169930679355360, 384163875688320, 820167497170560, 1668890801059920, 3249626139960480, 6096884624994960 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 123, 407. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 FORMULA This series is the q-expansion of E_4(z)^3. Cf. A004009. - Daniel D. Briggs, Nov 25 2011 691*a(n) - A029828(n) = 432000*A000594(n). - Seiichi Manyama, Jan 28 2017 EXAMPLE G.f. = 1 + 720*q + 179280*q^2 + 16954560*q^3 + 396974160*q^4 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, (t2^2 + 14 t2 t3 + t3^2)^3 ], {q, 0, n}]; (* Michael Somos, Jan 28 2017 *) terms = 19; QP = QPochhammer; s = (QP[x]^24 + 256*x*QP[x^2]^24)^3 / (QP[x]*QP[x^2])^24 + O[x]^terms; CoefficientList[s, x] (* Jean-François Alcover, Jul 07 2017, adapted from PARI *) terms = 19; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E4[x]^3 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 28 2018 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^24 + 256 * x * eta(x^2 + A)^24)^3 / (eta(x + A) * eta(x^2 + A))^24, n))}; /* Michael Somos, Jan 28 2017 */ (MAGMA) A := Basis( ModularForms( Gamma1(1), 12), 19); A[1] + 720*A[2]; /* Michael Somos, Jan 28 2017 */ CROSSREFS Cf. A000594, A004009, A029828, A280869. Sequence in context: A222004 A047803 A166765 * A221436 A239184 A003439 Adjacent sequences:  A008408 A008409 A008410 * A008412 A008413 A008414 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 08:24 EDT 2021. Contains 343580 sequences. (Running on oeis4.)