The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A282562 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both 2*x - y and 9*z^2 + 666*z*w + w^2 are squares. 4
 1, 2, 2, 2, 4, 4, 5, 2, 3, 5, 2, 2, 1, 5, 6, 2, 2, 5, 5, 1, 5, 7, 8, 1, 3, 4, 2, 4, 3, 9, 7, 5, 2, 5, 5, 4, 8, 3, 9, 3, 4, 4, 5, 3, 1, 7, 6, 3, 2, 13, 7, 5, 5, 5, 8, 3, 2, 3, 5, 2, 1, 6, 10, 6, 4, 8, 9, 1, 7, 8, 11, 3, 3, 6, 6, 5, 3, 11, 4, 4, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 12, 19, 23, 44, 60, 67, 139, 140, 248, 264, 347, 427, 499, 636, 1388, 1867, 1964, 4843). By the linked JNT paper, any nonnegative integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z*(z-w) = 0. Whether z = 0 or z = w, the number 9*z^2 + 666*z*w + w^2 is definitely a square. See also A282561 for a similar conjecture. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 0..10000 Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017. EXAMPLE a(12) = 1 since 12 = 2^2 + 0^2 + 2^2 + 2^2 with 2*2 - 0 = 2^2 and 9*2^2 + 666*2*2 + 2^2 = 52^2. a(19) = 1 since 19 = 1^2 + 1^2 + 4^2 + 1^2 with 2*1 - 1 = 1^2 and 9*4^2 + 666*4*1 + 1^2 = 53^2. a(44) = 1 since 44 = 5^2 + 1^2 + 3^2 + 3^2 with 2*5 - 1 = 3^2 and 9*3^2 + 666*3*3 + 3^2 = 78^2. a(60) = 1 since 60 = 3^2 + 5^2 + 1^2 + 5^2 with 2*3 - 5 = 1^2 and 9*1^2 + 666*1*5 + 5^2 = 58^2. a(67) = 1 since 67 = 4^2 + 7^2 + 1^2 + 1^2 with 2*4 - 7 = 1^2 and 9*1^2 + 666*1*1 + 1^2 = 26^2. a(139) = 1 since 139 = 8^2 + 7^2 + 1^2 + 5^2 with 2*8 - 7 = 3^2 and 9*1^2 + 666*1*5 + 5^2 = 58^2. a(140) = 1 since 140 = 3^2 + 5^2 + 5^2 + 9^2 with 2*3 - 5 = 1^2 and 9*5^2 + 666*5*9 + 9^2 = 174^2. a(264) = 1 since 264 = 8^2 + 0^2 + 10^2 + 10^2 with 2*8 - 0 = 4^2 and 9*10^2 + 666*10*10 + 10^2 = 260^2. a(499) = 1 since 499 = 7^2 + 5^2 + 20^2 + 5^2 with 2*7 - 5 = 3^2 and 9*20^2 + 666*20*5 + 5^2 = 265^2. a(1388) = 1 since 1388 = 15^2 + 21^2 + 19^2 + 19^2 with 2*15 - 21 = 3^2 and 9*19^2 + 666*19*19 + 19^2 = 494^2. a(1867) = 1 since 1867 = 16^2 + 31^2 + 5^2 + 25^2 with 2*16 - 31 = 1^2 and 9*5^2 + 666*5*25 + 25^2 = 290^2. a(4843) = 1 since 4843 = 11^2 + 13^2 + 52^2 + 43^2 with 2*11 - 13 = 3^2 and 9*52^2 + 666*52*43 + 43^2 = 1231^2. MATHEMATICA SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; Do[r=0; Do[If[SQ[2x-y], Do[If[SQ[n-x^2-y^2-z^2]&&SQ[9z^2+666z*Sqrt[n-x^2-y^2-z^2]+(n-x^2-y^2-z^2)], r=r+1], {z, 0, Sqrt[n-x^2-y^2]}]], {y, 0, Sqrt[4n/5]}, {x, Ceiling[y/2], Sqrt[n-y^2]}]; Print[n, " ", r]; Continue, {n, 0, 80}] CROSSREFS Cf. A000118, A000290, A271518, A281939, A281976, A282463, A282494, A282495, A282545, A282561. Sequence in context: A089873 A275433 A096323 * A035682 A054543 A240861 Adjacent sequences:  A282559 A282560 A282561 * A282563 A282564 A282565 KEYWORD nonn AUTHOR Zhi-Wei Sun, Feb 18 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 19:03 EST 2022. Contains 350565 sequences. (Running on oeis4.)