login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275433
Triangle read by rows: T(n,k) is the number of compositions of n having degree of asymmetry equal to k (n>=0; 0<=k<=n/3).
2
1, 1, 2, 2, 2, 4, 4, 4, 12, 8, 20, 4, 8, 44, 12, 16, 68, 44, 16, 132, 100, 8, 32, 196, 252, 32, 32, 356, 500, 136, 64, 516, 1068, 384, 16, 64, 900, 1956, 1096, 80, 128, 1284, 3804, 2592, 384, 128, 2180, 6612, 6152, 1280, 32, 256, 3076, 12108, 13056, 4080, 192, 256, 5124, 20292, 27784, 11056, 1024, 512, 7172, 35644, 54816, 28960, 3904, 64
OFFSET
0,3
COMMENTS
The degree of asymmetry of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the degree of asymmetry of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5).
A sequence is palindromic if and only if its degree of asymmetry is 0.
Sum(k*T(n,k), k>=0) = A275434(n).
LINKS
V. E. Hoggatt, Jr., and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
FORMULA
G.f.: G(t,z) = (1-z^2)/((1-z)*(1-2*z^2) - 2tz^3). In the more general situation of compositions into a[1]<a[2]<a[3]<..., denoting F(z) = Sum(z^{a[j]},j>=1}, we have G(t,z) =(1 + F(z))/(1 - F(z^2) - t(F(z)^2 - F(z^2))). In particular, for t=0 we obtain Theorem 1.2 of the Hoggatt et al. reference.
EXAMPLE
T(4,0) = 4 because we have 4, 22, 121, and 1111.
T(4,1) = 4 because we have 13, 31, 112, and 211.
Triangle starts:
1;
1;
2;
2,2;
4,4;
4,12;
8,20,4.
MAPLE
G := (1-z^2)/((1-z)*(1-2*z^2)-2*t*z^3): Gser := simplify(series(G, z = 0, 24)): for n from 0 to 20 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 20 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; expand(`if`(n=0, 1, add(b(n-j,
`if`(i=0, j, 0))*`if`(i>0 and i<>j, x, 1), j=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..20); # Alois P. Heinz, Jul 29 2016
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, Sum[b[n - j, If[i == 0, j, 0]]*If[i > 0 && i != j, x, 1], {j, 1, n}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
CROSSREFS
Cf. A275434.
Row sums give A011782.
Column k=0 gives A016116.
Sequence in context: A344853 A173862 A089873 * A096323 A282562 A035682
KEYWORD
nonn,tabf,changed
AUTHOR
Emeric Deutsch, Jul 29 2016
STATUS
approved