login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281960
Primes that are the sum of three consecutive odd semiprimes.
1
61, 79, 107, 139, 163, 191, 211, 263, 271, 373, 443, 617, 719, 733, 761, 971, 991, 1097, 1129, 1231, 1259, 1373, 1439, 1531, 1543, 1597, 1663, 1697, 1733, 1753, 1777, 1831, 2053, 2081, 2099, 2137, 2161, 2213, 2383, 2423, 2543, 2677, 2687, 2719, 2777, 2843, 2917
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (1..3263 from K. D. Bajpai)
EXAMPLE
a(1) = 61 is a prime and 61 = 15 + 21 + 25; the sum of three consecutive odd semiprimes.
a(2) = 79 is a prime and 79 = 21 + 25 + 33; the sum of three consecutive odd semiprimes.
MATHEMATICA
Select[Total /@ Partition[Select[Range[2000], Plus @@ Last /@ FactorInteger[#] == 2 && OddQ[#] &], 3, 1], PrimeQ]
PROG
(PARI) list(lim)=my(v=List(), u=v, t, L=lim+10); forprime(p=3, L\3, forprime(q=3, min(p, L\p), listput(u, p*q))); u=Set(u); for(i=3, #u, if(isprime(t=u[i-2]+u[i-1]+u[i]), listput(v, t))); while((t=u[#u-1]+u[#u]+L++)<lim, if(bigomega(L)==2, u=concat(u, L); if(t>lim, break); if(isprime(t), listput(v, t)))); Vec(v) \\ Charles R Greathouse IV, Feb 03 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Feb 03 2017
STATUS
approved