OFFSET
1,1
COMMENTS
Brink showed that prime numbers congruent to 1, 16 or 22 modulo 39 are representable by both or neither of the quadratic forms x^2 + x*y + 10*y^2 and x^2 + x*y + 127*y^2. A325075 corresponds to those representable by both, and this sequence corresponds to those representable by neither.
LINKS
David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
Rémy Sigrist, PARI program for A325076
Wikipedia, Kaplansky's theorem on quadratic forms
EXAMPLE
Regarding 61:
- 61 is a prime number,
- 61 = 39 + 22,
- 61 is neither representable by x^2 + x*y + 10*y^2 nor by x^2 + x*y + 127*y^2,
- hence 61 belongs to this sequence.
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Mar 28 2019
STATUS
approved