|
|
A325074
|
|
Prime numbers congruent to 9 modulo 20 representable by x^2 + 100*y^2.
|
|
3
|
|
|
109, 149, 269, 389, 409, 449, 569, 829, 929, 1069, 1129, 1429, 1489, 1609, 1889, 1949, 2129, 2269, 2309, 2549, 2609, 2689, 2749, 2789, 2909, 2969, 3109, 3209, 3229, 3449, 3709, 3769, 3889, 4129, 4349, 4409, 4889, 4909, 4969, 5189, 5309, 5449, 5569, 5749, 6029
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Brink showed that prime numbers congruent to 9 modulo 20 are representable by exactly one of the quadratic forms x^2 + 20*y^2 or x^2 + 100*y^2. A325073 corresponds to those representable by the first form, and this sequence corresponds to those representable by the second form.
|
|
LINKS
|
Table of n, a(n) for n=1..45.
David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
Rémy Sigrist, PARI program for A325074
Wikipedia, Kaplansky's theorem on quadratic forms
|
|
EXAMPLE
|
Regarding 4409:
- 4409 is a prime number,
- 4409 = 220*20 + 9,
- 4409 = 53^2 + 100*4^2,
- hence 4409 belongs to this sequence.
|
|
PROG
|
(PARI) See Links section.
|
|
CROSSREFS
|
See A325067 for similar results.
Cf. A141883, A325073.
Sequence in context: A095609 A046295 A164288 * A182476 A182451 A161483
Adjacent sequences: A325071 A325072 A325073 * A325075 A325076 A325077
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Rémy Sigrist, Mar 27 2019
|
|
STATUS
|
approved
|
|
|
|