OFFSET
0,2
COMMENTS
All the values except a(1) are odd.
From Robert Israel, Jan 02 2017: (Start)
Number of solutions to (n+1)*x*y = (n-1)*z*w for x,y,z,w in [0..n].
a(n) >= (2n+1)^2, with equality if n+1 is an odd prime. (End)
LINKS
Robert Israel and Indranil Ghosh, Table of n, a(n) for n = 0..1600 (n = 0..200 from Indranil Ghosh)
MAPLE
g:= proc(r, n) if r = 0 then 2*n+1 else nops(select(t -> t <= n and r <= t*n, numtheory:-divisors(r))) fi end proc:
f:= proc(n) local c;
if n::even then (2*n+1)^2 + add(g((n+1)*c, n)*g((n-1)*c, n), c=1..n-1)
else (2*n+1)^2 + add(g((n+1)/2*c, n) * g((n-1)/2*c, n), c=1..2*n-1)
fi
end proc:
map(f, [$0..100]); # Robert Israel, Jan 02 2017
MATHEMATICA
g[r_, n_] := If[r == 0, 2n + 1, Length[Select[Divisors[r], # <= n && r <= # n&]]];
f[n_] := If[EvenQ[n], (2n + 1)^2 + Sum[g[(n + 1)c, n] g[(n - 1)c, n], {c, 1, n - 1}], (2n + 1)^2 + Sum[g[(n + 1)/2 c, n] g[(n - 1)/2 c, n], {c, 1, 2n - 1}]];
f /@ Range[0, 100] (* Jean-François Alcover, Jul 29 2020, after Robert Israel *)
PROG
(Python)
def t(n):
s=0
for a in range(0, n+1):
for b in range(0, n+1):
for c in range(0, n+1):
for d in range(0, n+1):
if (a*d-b*c)*n==(a*d+b*c):
s+=1
return s
for i in range(0, 201):
print str(i)+" "+str(t(i))
CROSSREFS
Cf. A280321 (Number of 2 X 2 matrices with all elements in {0,..,n} with permanent*n = determinant).
Cf. A015237 (Number of 2 X 2 matrices having all elements in {0..n} with determinant = permanent).
Cf. A016754 (Number of 2 X 2 matrices having all elements in {0..n} with determinant =2* permanent).
Cf. A280364 (Number of 2 X 2 matrices having all elements in {0..n} with determinant^n = permanent).
KEYWORD
nonn
AUTHOR
Indranil Ghosh, Jan 02 2017
STATUS
approved