login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280321
Number of 2 X 2 matrices with all elements in {0,..,n} having determinant = n*permanent.
3
1, 12, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025, 9409, 9801, 10201
OFFSET
0,2
COMMENTS
Same as A016754, except for n=1. Here a(1)=12 but A016754(1)=9.
LINKS
FORMULA
a(n+1) = (((n-2)*a(n))/(n-1)) + ((12*(n)^2-12*(n)+1)/(n-1)) for n>=1.
Conjectures from Colin Barker, Jan 01 2017: (Start)
a(n) = (1 + 2*n)^2 = A273789(n) = A273743(n) for n>1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
G.f.: (1 + 9*x - 8*x^2 + 9*x^3 - 3*x^4) / (1 - x)^3.
(End)
PROG
(Python)
def t(n):
s=0
for a in range(n+1):
for b in range(n+1):
for c in range(n+1):
for d in range(n+1):
if (a*d-b*c)==n*(a*d+b*c):
s+=1
return s
for i in range(41):
print(str(i)+" "+str(t(i)))
CROSSREFS
Cf. A016754.
Sequence in context: A224669 A164577 A195143 * A198274 A229447 A175523
KEYWORD
nonn
AUTHOR
Indranil Ghosh, Jan 01 2017
STATUS
approved