login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280320
Sum of the squares of the smaller parts of the partitions of 2n into two squarefree parts.
3
1, 5, 10, 14, 34, 66, 59, 75, 84, 220, 205, 309, 373, 600, 565, 665, 839, 1103, 959, 1191, 1176, 1860, 1416, 2060, 1664, 3653, 2194, 3505, 2891, 4974, 3563, 5534, 4371, 7551, 5845, 8874, 6742, 10409, 7061, 10145, 8037, 12414, 9030, 13327, 10849, 15319, 13473, 15960
OFFSET
1,2
FORMULA
a(n) = Sum_{i=1..n} i^2 * mu(i)^2 * mu(2n-i)^2, where mu is the Möbius function (A008683).
a(n) = A280316(n) - A280322(n).
MAPLE
with(numtheory): A280320:=n->add(i^2*mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280320(n), n=1..100);
MATHEMATICA
Table[Total[Select[IntegerPartitions[2 n, {2}], AllTrue[#, SquareFreeQ]&][[All, 2]]^2], {n, 50}] (* Harvey P. Dale, Jan 22 2023 *)
PROG
(PARI) a(n) = sum(i=1, n, i^2*issquarefree(i)*issquarefree(2*n-i)); \\ Michel Marcus, May 16 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 31 2016
STATUS
approved