OFFSET
0,2
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
O.g.f.: x*(8 - 3*x)/(1 - x)^3.
E.g.f.: x*(16 + 5*x)*exp(x)/2.
a(n+h) - a(n-h) = h*A017281(n+1), with h>=0. A particular case:
a(n) - a(-n) = 11*n = A008593(n).
a(n+h) + a(n-h) = 2*a(n) + A033429(h), with h>=0. A particular case:
a(n) + a(-n) = A033429(n).
a(n) - a(n-2) = A017281(n) for n>1. Also:
40*a(n) + 121 = A017281(n+1)^2.
MATHEMATICA
Table[n (5 n + 11)/2, {n, 0, 60}]
LinearRecurrence[{3, -3, 1}, {0, 8, 21}, 60] (* Harvey P. Dale, Nov 14 2022 *)
PROG
(PARI) vector(60, n, n--; n*(5*n+11)/2)
(Python) [n*(5*n+11)/2 for n in range(60)]
(Sage) [n*(5*n+11)/2 for n in range(60)]
(Magma) [n*(5*n+11)/2: n in [0..60]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 22 2016
STATUS
approved