login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(5*n + 11)/2.
2

%I #31 Nov 14 2022 17:04:05

%S 0,8,21,39,62,90,123,161,204,252,305,363,426,494,567,645,728,816,909,

%T 1007,1110,1218,1331,1449,1572,1700,1833,1971,2114,2262,2415,2573,

%U 2736,2904,3077,3255,3438,3626,3819,4017,4220,4428,4641,4859,5082,5310,5543,5781,6024,6272,6525

%N a(n) = n*(5*n + 11)/2.

%H Bruno Berselli, <a href="/A279895/b279895.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F O.g.f.: x*(8 - 3*x)/(1 - x)^3.

%F E.g.f.: x*(16 + 5*x)*exp(x)/2.

%F a(n+h) - a(n-h) = h*A017281(n+1), with h>=0. A particular case:

%F a(n) - a(-n) = 11*n = A008593(n).

%F a(n+h) + a(n-h) = 2*a(n) + A033429(h), with h>=0. A particular case:

%F a(n) + a(-n) = A033429(n).

%F a(n) - a(n-2) = A017281(n) for n>1. Also:

%F 40*a(n) + 121 = A017281(n+1)^2.

%F a(n) = A000566(n) + 7*n, also a(n) = A000566(n) + A008589(n). - _Michel Marcus_, Dec 22 2016

%t Table[n (5 n + 11)/2, {n, 0, 60}]

%t LinearRecurrence[{3,-3,1},{0,8,21},60] (* _Harvey P. Dale_, Nov 14 2022 *)

%o (PARI) vector(60, n, n--; n*(5*n+11)/2)

%o (Python) [n*(5*n+11)/2 for n in range(60)]

%o (Sage) [n*(5*n+11)/2 for n in range(60)]

%o (Magma) [n*(5*n+11)/2: n in [0..60]];

%Y Cf. A000566, A008589, A017281.

%Y Second bisection of A165720.

%Y The first differences are in A016885.

%Y Cf. similar sequences provided by P(s,m)+s*m, where P(s,m) = ((s-2)*m^2-(s-4)*m)/2 is the m-th s-gonal number: A008585 (s=2), A055999 (s=3), A028347 (s=4), A140091 (s=5), A033537 (s=6), this sequence (s=7), A067725 (s=8).

%K nonn,easy

%O 0,2

%A _Bruno Berselli_, Dec 22 2016