login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279898
Number of nX4 0..2 arrays with no element unequal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1
2, 8, 20, 56, 156, 428, 1208, 3316, 9168, 25200, 69152, 189996, 520700, 1426696, 3905118, 10677540, 29172966, 79621084, 217117820, 591513132, 1610070116, 4378827488, 11898970622, 32308585292, 87659016834, 237661886268
OFFSET
1,1
COMMENTS
Column 4 of A279902.
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) +4*a(n-2) -20*a(n-3) -26*a(n-4) +44*a(n-5) +74*a(n-6) +18*a(n-7) -25*a(n-8) -176*a(n-9) -246*a(n-10) +82*a(n-11) +331*a(n-12) +102*a(n-13) +91*a(n-14) -88*a(n-15) -360*a(n-16) +80*a(n-17) +140*a(n-18) -16*a(n-19) -16*a(n-20) for n>23
EXAMPLE
Some solutions for n=4
..0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..1..1. .0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..0
..0..0..1..1. .2..2..2..2. .1..1..1..2. .0..0..0..0. .0..0..1..1
..0..0..2..1. .2..2..2..2. .1..1..1..1. .0..0..0..0. .0..1..1..1
CROSSREFS
Cf. A279902.
Sequence in context: A302323 A192698 A305050 * A221066 A238760 A174477
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 22 2016
STATUS
approved