Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Dec 22 2016 12:51:40
%S 2,8,20,56,156,428,1208,3316,9168,25200,69152,189996,520700,1426696,
%T 3905118,10677540,29172966,79621084,217117820,591513132,1610070116,
%U 4378827488,11898970622,32308585292,87659016834,237661886268
%N Number of nX4 0..2 arrays with no element unequal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
%C Column 4 of A279902.
%H R. H. Hardin, <a href="/A279898/b279898.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) +4*a(n-2) -20*a(n-3) -26*a(n-4) +44*a(n-5) +74*a(n-6) +18*a(n-7) -25*a(n-8) -176*a(n-9) -246*a(n-10) +82*a(n-11) +331*a(n-12) +102*a(n-13) +91*a(n-14) -88*a(n-15) -360*a(n-16) +80*a(n-17) +140*a(n-18) -16*a(n-19) -16*a(n-20) for n>23
%e Some solutions for n=4
%e ..0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
%e ..0..0..1..1. .0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..0
%e ..0..0..1..1. .2..2..2..2. .1..1..1..2. .0..0..0..0. .0..0..1..1
%e ..0..0..2..1. .2..2..2..2. .1..1..1..1. .0..0..0..0. .0..1..1..1
%Y Cf. A279902.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 22 2016